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In this paper realization problems for operator-valued R-functions acting in
finite-dimentional Hilbert space E as linear-fractional transformations of the trans-
fer operator-functions of linear stationary conservative dynamic systems (l.s.c.d.s.)
θ of the form

(0)

{
(A− zI) = KJφ−

φ+ = φ− − 2iK∗x
(Im A = KJK∗)

are investigated. In a system θ of the form (0) an operator A is a bounded linear
operator, acting from H+ into H− ,H+ ⊂ H ⊂ H− is rigged Hilbert space,

A ⊃ T ⊃ A, A∗ ⊃ T ∗ ⊃ A,

where A is Hermitian operator in H, T is nonhermitian operator in H , K is a linear
bounded operator from E into H,J = J∗ = J−1 and this operator is acting in
E,φ± ∈ E, φ− is an input vector,φ+ is an output vector, x ∈ H+ is a vector of an
inner state of the system θ, an operator-valued function

Wθ(z) = I − 2iK∗(A− zI)−1KJ (φ+ = Wθ(z)φ−)

is a transfer operator-function of the system θ.
It turns out, that not all operator-valued R-functions can be realized in the above

mentioned sense and we give a criteria of such a realizability in this paper.In terms
of realizable operator-valued R-functions we specialize in subclasses of the following
types:

(1) a subclass for which D(A) = H, D(T ) 6= D(T ∗)
(2) a subclass for which D(A) 6= H, D(T ) = D(T ∗)
(3) a subclass for which D(A) 6= H, D(T ) 6= D(T ∗)
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Given classes of operator-valued R-functions allow us to define classes of J-
contractive operator-valued functions in half-plane, which can be realized as a trans-
fer mapping of the system θ with, generally speaking, unbounded main operator.A
problem when the product of J-contractive operator-valued functions from defined
classes belongs to the same classes , is investigated.

We consider also a problem of factorization of a realizable J-contractive operator-
function in half-plane which is connected with invariant subspaces of the main
operator T of a system θ.

A class of a realizable J-contractive operator-valued functions in half-plane for
which main operators T of systems θ have a property 1) turned out to be very
interesting.The theorem on constant J-unitary factor in which we show that prod-
uct (in any order) of an arbitrary constant J-unitary operator and J-contractive
operator-valued function in a half-plane from the mentioned above class belongs to
this class, takes place.

We investigate also a problem of connection between realizations of two transfer
mappings differing in the constant J-unitary factor.

Note that for the first time the problem of studying oscillations in lengthy line
with the aid of system theory with unbounded operators had been formulated by
M.S.Livs̆ic [11] and later but independently - by J.W.Helton [7].

2.

Let A be a linear closed Hermitian operator, acting in Hilbert space H with,
generally speaking, non-dense domain D(A). Let H0 = D(A), A∗-conjugate to
A (we consider operator A as acting from H0 into H). Let us denote H+ =
D(A∗) ((D(A∗) = H) and define in H+ scalar product

(f, g)+ = (f, g) + (A∗f, A∗g) (f, g ∈ H+)

and then build the rigged Hilbert space H+ ⊂ H ⊂ H−. See [1,2]. We call an
operator A regular, if PA is a closed operator in H0 (P is an orthoprojector H onto
H0). A regular operator A is called O-operator if its semidefect numbers (defect
numbers of an operator PA) are equal to zero.

An operator A ∈ [H+, H−] ([H+, H−] - the set of all linear bounded operators
acting from H+ into H−) is called biextension of a regular Hermitian operator A, if

A ⊃ A, A∗ ⊃ A

If A = A∗, then A is called a selfadjoint biextension of an operator A. Note, that
identifying the space conjugate to H± with H±. We have that A∗ ∈ [H+, H−].

We say that the closed linear operator T with dense domain in H belongs to the
class ΛA if:

(1) T ⊃ A, T ∗ ⊃ A where A is a maximal common Hermitian part of T and
T ∗ and operator A is regular.

(2) (−i) is a regular point of T .1

1The condition, that (−i) is a regular point in the definition of the class ΛA is non-essential.
It is sufficient to require the existence of some regular point for T .
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An operator A ∈ [H+, H−] is called a (∗)-extension of an operator T of the class ΛA

if
A ⊃ T ⊃ A

A∗ ⊃ T ∗ ⊃ A

This (∗)-extension A of an operator T is called correct, if an operator

AR =
1
2
(A+ A∗)

has the following property: An operator

Âf = ARf

D(Â) = {f ∈ H+ : ARf ∈ H}
is a selfadjoint operator in Hilbert space H.

Definition 1.. The aggregate

(1) θ =
(

A K J
H+ ⊂ H ⊂ H− E

)

is called a linear stationary conservative dynamic system if
(1) A is a correct (∗)-extension of an operator T of the class ΛA.
(2) J = J∗ = J−1 ∈ [E, E], dim E < ∞
(3) A− A∗ = 2iKJK∗, where K ∈ [E, H−] (K∗ ∈ [H+, E])

In addition an operator K is called a channel operator and J is called a direction
operator. System θ of the form (1) will be called a passage system if J 6= I and a
scattering system if J = I.

3.

As it is known [8] an operator-function V (z) ∈ [E, E] is called an operator-
valued R-function if it is holomorphic in the upper half-plane and Im V (z) ≥ 0
when Im z > 0.

An operator-valued R-function, acting in Hilbert space E(dimE < ∞) has, as
it is known [8], integral representation

(2) V (z) = Q + F · z +
∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dG(t)

where Q = Q∗, F ≥ 0 in the Hilbert space E, G(t) is non-decreasing operator-
function on (−∞, +∞) for which

∫ +∞

−∞

dG(t)
1 + t2

< ∞.
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Definition 2. We call an operator-valued R-function acting in Hilbert space E
(dim E < ∞) realizable if in some neighbourhood of point (−i) V (z) can be rep-
resented in the form

(3) V (z) = i[Wθ(z) + I]−1[Wθ(z)− I]J

where Wθ(z) is a transfer operator-function of some l.s.c.d. θ with the direction
operator J (J = J∗ = J−1 ∈ [E, E]).

It may be shown, that the transfer operator-function of the system θ of the form
(1) has the following properties:

(4)

W ∗
θ (z)JWθ(z)− J ≥ 0 (Im z > 0, z ∈ ρ(T ))

W ∗
θ (z)JWθ(z)− J = 0 (Im z = 0, z ∈ ρ(T ))

W ∗
θ (z)JWθ(z)− J ≤ 0 (Im z < 0, z ∈ ρ(T ))

where ρ(T ) is the set of regular points of an operator T .
Similar relations take place if we change Wθ(z) on to W ∗

θ (z) in (4). Thus, a
transfer operator- function of the system θ of the form (1) is J-contractive in the
lower half-plane on the set of regular points of an operator T and J-unitary on real
regular points of an operator T . Let θ be a l.s.c.d.s of the form (1). We consider
an operator-function

(5) Vθ(z) = K∗(AR − zI)−1K

The transfer operator-function Wθ(z) of the system θ and an operator-function
Vθ(z) of the form (5) are connected with relation

(6) Vθ(z) = i[Wθ(z) + I]−1[Wθ(z)− I]J

Operator T of the class ΛA is called completely nonselfadjoint [4], [10] if there exists
no reducing invariant subspace on which one induces a self-adjoint operator.

Realization of an operator-valued R-function V (z) ∈ [E,E] by the system θ of
the form (1) is called minimal if an operator T is completely nonselfadjoint.

Definition 3. An operator-valued R-function V (z) ∈ [E, E] (dim E < ∞) will
be said to be a member of the class N(R) if in the representation (2)

i) F = 0,

ii) Qe =
∫ +∞

−∞

dG(t)
1 + t2

e

for all e ∈ E, when ∫ +∞

−∞
(dG(t)e, e)E < ∞

Theorem 1. . Let θ be a l.s.c.d.s. of the form (1), dim E < ∞. Then operator-
function Vθ(z) of the form (5), (6) belongs to the class N(R). Conversely, let
operator-function V (z) act in a finitedimensional Hilbert space E and belong to the
class N(R). Then it admits minimal realization by the system θ of the form (1)
with a preassigned direction operator J(J = J∗ = J−1 ∈ [E, E]).

From here, in particular, it follows, that every operator-function of the class
N(R) acting in finitedimensional Hilbert space admits minimal realization with the
help of some scattering system θ of the form (1).
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Definition 4. . An operator-valued R-function V (z) ∈ [E,E] (dim E < ∞) of
the class N(R) is said to be a member of the subclass N0(R) if in the representation
(2) ∫ +∞

−∞
(dG(t)e, e)E = ∞ (e ∈ E, e 6= 0)

From here it follows, that operator-function V (z) of the class N0(R) has a repre-
sentation

V (z) = Q +
∫ +∞

−∞

(
1

t− z
− t

1 + t2

)
dG(t) (Q = Q∗)

Note, that an operator Q can be an arbitrary self-adjoint operator in Hilbert space
E.

Definition 5. . An operator-valued R-function V (z) ∈ [E,E] (dim E < ∞) of
the class N(R) is said to be a member of the subclass N1(R) if in the representation
(2) ∫ +∞

−∞
(dG(t)e, e)E < ∞ (e ∈ E)

Thus, an operator-function V (z) of the class N1(R) has a representation

V (z) =
∫ +∞

−∞

1
t− z

dG(t)

An operator-valued R-function V (z) ∈ [E, E], (dimE < ∞) of the class N(R)
will be said to be a member of the subclass N01(R) if the subspace

E⊥
∞ =

{
e ∈ E :

∫ +∞

−∞
(dG(t)e, e)E < ∞

}

possess a property: E⊥
∞ 6= ∅, E⊥

∞ 6= E.

Theorem 2. Let θ be a l.s.c.d. of the form (1), dim E < ∞ where A is a linear
closed Hermitian operator with a dense domain and D(T ) 6= D(T ∗).Then operator-
function Vθ(z) of the form (5),(6) belongs to the class N0(R).Conversely, let an
operator-function V (z) act in a finitedimensional Hilbert space E and belong to the
class N0(R). Then it admits a minimal realization by the system θ of the form (1)
with a preassigned direction operator J(J = Jn = J−1 ∈ [E,E]) and A is a linear
closed Hermitian operator with dense domain, D(T ) 6= D(T ∗).

Theorem 3. Let θ be a l.s.c.d.s. of the form (1) where D(T ) = D(T ∗) and A is a
linear closed regular Hermitian O-operator. Then an operator-function Vθ(z) of the
form (5), (6) belongs to the class N1(R). Conversely, let an operator-function V (z)
act in a finitedimensional Hilbert space E and belong to the class N1(R). Then it
admits a minimal realization by the system θ of the form (1) with a preassigned
direction operator J(J = J∗ = J−1 ∈ [E,E]) where A is a linear closed regular
Hermitian O-operator with a non-dense domain and D(T ) = D(T ∗).

The theorem, similar to theorems (1)-(3), takes place also for an operator-
functions of the class N01(R).
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Definition 6. An operator-function W (z) acting in finitedimensional Hilbert space
E is said to be a member of the class Ω(R, J) , (Ω1(R, J), Ω01(R, J)), where J =
J∗ = J−1 ∈ [E, E], if it is holomorphic in some neighbourhood of the point (−i)
and an operator-function

V (z) = i[W (z) + I]−1[W (z)− I]J

belongs to the class N(R) (N0(R), N1(R), N01(R)) respectively.

Thus, classes Ω(R, J), Ω0(R, J), Ω1(R, J), Ω01(R, J) represent the set of J-contructive
operator-functions in the lower half-plane with properties (4), which can be realized
as transfer operator-functions of the system θ of the form (1) with those or other
characteristics of the main operator T .

The theorems (1)-(3) develop and make precise the known results by M.S.Livs̆ic
on the theory of inverse problem of the characteristic operator-functions and sys-
tems [10]. For the considered class of operators the theorem 3 reinforces one result
from [9].

Theorem 4. Let operator-functions W1(z) and W2(z) acting in finitedimensional
Hil-
bert space E belong to classes Ω(R, J) (Ω0(R, J), Ω1(R, J)). Then their product (in
any order) also belongs to classes Ω(R, J) (Ω0(R, J), Ω1(R, J)) respectively.

Theorem 5. Let

(7) θ1 =
(

A 1 K1 J
H+1 ⊂ H1 ⊂ H−1 E

)
and θ2 =

(
A 2 K2 J

H+2 ⊂ H2 ⊂ H−2 E

)

be linear stationary conservative dynamic systems of the form (1) so that their
transfer operator-functions Wθ1(z) and Wθ2(z) belong to the class Ω01(R, J).The
product Wθ1(z) · Wθ2(z) (Wθ2(z) ·Wθ1(z)) also belongs to the class Ω01(R, J) if
and only if the set

D12 = {x = x1 + x2 : x1 ∈ D(T ∗1 ), x2 ∈ D(T2),K∗
1x1 + K∗

2x2 = 0}

and respectively

D21 = {x = x2 + x1 : x2 ∈ D(T ∗2 ), x1 ∈ D(T1, K∗
2x2 + K∗

1x1 = 0}

is non-dense in Hilbert space H1 ⊗ H2.

There exists an example of the systems θ1 and θ2 transfer mappings of which
Wθ1(z) and Wθ2(z) belong to the class Ω01(R, J), but their product Wθ1(z) ·Wθ2(z)
belongs to the class Ω0(R, J).The criterion when Wθ1(z)·Wθ2(z) (Wθ2(z) ·Wθ1(z))
belongs to the class Ω01(R, J) if Wθ1(z) belongs to the Ω0(R, J) and Wθ2(z) belongs
to the Ω1(R, J) is found. It may be shown also, that if W1(z) ∈ Ω0(R, J),W2(z) ∈
Ω1(R, J) and these operator-functions, acting in finitedimensional Hilbert space E,
are commuting, then W1(z)W2(z) ∈ Ω01(R, J).

Note, that theorem 4 permits system θ, the transfer mapping of which Wθ(z) =
Wθ1(z) · Wθ2(z), to be built constructively, when transfer mappings Wθ1(z) and
Wθ2(z) of systems θ1 and θ2 of the form (1) are known.
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There is a procedure of ”projection” of the system θ of the form (1) onto an
arbitrary invariant subspace of the operator T and its orthogonal complement.In
addition, for systems θ1 and θ2, which are ”projections” of the system θ a factor-
ization formula

(8) Wθ(z) = Wθ1(z) ·Wθ2(z)

is valid.Besides, if a transfer mapping Wθ(z) belongs to the class Ω(R, J), then
Wθ1(z) and Wθ2(z) also belong to the class Ω(R, J). The analogous property of
factorization takes place for transfer mappings Wθ(z) of the class Ω1(R, J). But if
Wθ(z) belongs to the class Ω0(R, J) or Ω01(R, J), then in the factorization formula
(8), as it follows from theorem 5 and comments to it, factors Wθ1(z) and Wθ2(z)
can, generally speaking, be in different classes (Ω0(R, J),Ω1(R, J),Ω01(R, J)).

Theorem 6. Let θ be a l.s.c.d.s. of the form (1) with an invertible channel operator
K and a direction operator J (J = J∗ = J−1 ∈ [E,E], dim E < ∞), where
transfer mapping Wθ(z) belongs to the class Ω0(R, J). Then for arbitrary constant
J-unitary operators B and C, acting in Hilbert space E, the product B ·Wθ(z) ·C,
also belongs to the class Ω0(R, J).

Theorem 6 in somewhat other wording was established by Yu.M.Arlinskĭi and
E.R.Tsekanovskĭi [1] and being published for the first time. Note that theorem
6 fails to be true if dim E = ∞. See [1]. There is a procedure of realization
W (z) · C (B ·W (z)) knowing realization W (z) ∈ Ω0(R, J), where B and C are
an arbitrary constant J-unitary operator [1]. Besides, it was established [1] that
if Wθ1(z) and Wθ2(z) belong to the class Ω0(R, J) and operators A 1 and A2 of
systems θ1 and θ2 of the form (7) are different correct (∗)-extensions of the same
operator T of the class ΛA, then under some restrictions of the channel operators
K1 and K2 of systems θ1 and θ2, respectively, transfer mappings Wθ1 and Wθ2

satisfy the relation
Wθ2(z) = Wθ1(z) · C

where C is some constant J-unitary operator.
Note that theorems 1 - 6 are a further development and complement of the

investigations by M.S.Brodskĭi, M.S.Livs̆ic, V.P.Potapov, A.V.Shtraus, N.Bart,
I.Gohberg, M.Kaashoek, A.C.Ran [3] [4] [6] [10] [12] [13,14] (see, also survey [5]
). Realization problems for a very general class of transfer functions of systems
with, generally speaking, unbounded operators have recently been investigated by
G.Weiss [15] .
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