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Realization of inverse Stieltjes functions (−mα(z))
by Schrödinger L-systems

S. Belyi and E. Tsekanovskĭi

Abstract. We study L-system realizations of the original Weyl-Titchmarsh
functions (−mα(z)). In the case when the minimal symmetric Schrödinger
operator is non-negative, we describe the Schrödinger L-systems that realize
inverse Stieltjes functions (−mα(z)). This approach allows to derive a neces-
sary and sufficient conditions for the functions (−mα(z)) to be inverse Stieltjes.
In particular, the criteria when (−m∞(z)) is an inverse Stieltjes function is
provided. Moreover, the value m∞(−0) and parameter α allow us to describe
the geometric structure of the realizing (−mα(z)) L-system. Additionally, we

present the conditions in terms of the parameter α when the main and asso-
ciated operators of a realizing (−mα(z)) L-system have the same or different
angle of sectoriality which sets connections with the Kato problem on sectorial
extensions of sectorial forms.
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1. Introduction

The current paper is the third part of the project (started in [7] and continued
in [6]) that studies the realizations of the original Weyl-Titchmarsh function m∞(z)
and its linear-fractional transformation mα(z) associated with a Schrödinger oper-
ator. We investigate the Herglotz-Nevanlinna functions −m∞(z) and 1/m∞(z) as
well as −mα(z) and 1/mα(z) that are realized as impedance functions of L-systems
containing a dissipative Schrödinger main operator Th, (Imh > 0). These L-systems
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will be refer to as Schrödinger L-systems for the rest of the paper. All formal defi-
nitions and expositions of general and Schrödinger L-systems are given in Sections
2 and 4. Note that all Schrödinger L-systems Θµ,h form a two-parametric family
whose members are uniquely defined by a real-valued parameter µ and a complex
boundary value h (Im h > 0) of the main dissipative operator.

In this paper we concentrate on the case when the realizing Schrödinger L-
systems are based on non-negative symmetric Schrödinger operator and have ac-
cretive main and accumulative state-space operator.1 It was shown in [1] (see also
[8]) that the impedance functions of L-systems with accumulative state-space oper-
ators are inverse Stieltjes functions. Following our approach from [6] here we also
set focus on the situation when the realizing accumulative Schrödinger L-systems
are sectorial (see Section 2 for the definition) and the functions (−mα(z)) are the
members of sectorial classes S−1,β and S−1,β1,β2 of inverse Stieltjes functions that
are described in Section 3. Section 5 is dedicated to the general realization re-
sults from [7] for the functions (−m∞(z)), 1/m∞(z), and (−mα(z)). In particular,
we recall there that (−m∞(z)), 1/m∞(z), and (−mα(z)) can be realized as the
impedance function of Schrödinger L-systems Θ0,i, Θ∞,i, and Θtanα,i, respectively.

Section 6 contains the main results of the paper when the realization results
from Section 5 are applied to Schrödinger L-systems with non-negative symmetric
Schrödinger operator to obtain important additional properties. Remark 7 of Sec-
tion 6 provides us with the set of criteria for the functions (−mα(z)) to be Stiejtjes
or inverse Stijeltjes. In particular, the Theorem 6 and Remark 7 give the necessary
and sufficient conditions for (−m∞(z)) to be an inverse Stieltjes function. Using the
results provided in Section 4, we obtain new properties of L-systems Θtanα,i whose
impedance function belong to certain sectorial classes of inverse Stieltjes functions.
We emphasize that these results are formulated in terms of the parameter α defin-
ing the function mα(z). Also, the knowledge of the limit value m∞(−0) and the
value of parameter α lets us find the exact angles of sectoriality of the main Ti
and associate Ã operators of a realizing L-system that establishes the connection
to Kato’s problem about sectorial extension of sectorial forms.

We conclude the paper with providing an example that illustrates the main
concepts. All the results obtained in this article contribute to a further development
of the theory of open physical systems conceived by M. Livs̆ic in [21].

2. Preliminaries

For a pair of Hilbert spaces H1, H2 we denote by [H1,H2] the set of all bounded

linear operators from H1 to H2. Let Ȧ be a closed, densely defined, symmetric op-
erator in a Hilbert space H with inner product (f, g), f, g ∈ H. Any non-symmetric
operator T in H such that

Ȧ ⊂ T ⊂ Ȧ∗

is called a quasi-self-adjoint extension of Ȧ.
Consider the rigged Hilbert space (see [13], [1]) H+ ⊂ H ⊂ H−, where H+ =

Dom(Ȧ∗) and

(1) (f, g)+ = (f, g) + (Ȧ∗f, Ȧ∗g), f, g ∈ Dom(A∗).

1The situation when the state-space operator of the realizing Schrödinger L-system was ac-
cretive was thoroughly considered in [6].
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Let R be the Riesz-Berezansky operator R (see [13], [1]) which maps H− onto H+

such that (f, g) = (f,Rg)+ (∀f ∈ H+, g ∈ H−) and ‖Rg‖+ = ‖g‖−. Note that
identifying the space conjugate to H± with H∓, we get that if A ∈ [H+,H−], then
A∗ ∈ [H+,H−]. An operator A ∈ [H+,H−] is called a self-adjoint bi-extension of a

symmetric operator Ȧ if A = A∗ and A ⊃ Ȧ. Let A be a self-adjoint bi-extension

of Ȧ and let the operator Â in H be defined as follows:

Dom(Â) = {f ∈ H+ : Af ∈ H}, Â = A↾Dom(Â).

The operator Â is called a quasi-kernel of a self-adjoint bi-extension A (see [28],
[1, Section 2.1]). According to the von Neumann Theorem (see [1, Theorem 1.3.1])

the domain of Â, a self-adjoint extension of Ȧ, can be expressed as

Dom(Â) = Dom(Ȧ)⊕ (I + U)Ni,

where von Neumann’s parameter U is a (·) (and (+))-isometric operator from Ni

into N−i and

N±i = Ker (Ȧ∗ ∓ iI)

are the deficiency subspaces of Ȧ.
A self-adjoint bi-extension A of a symmetric operator Ȧ is called t-self-adjoint

(see [1, Definition 4.3.1]) if its quasi-kernel Â is self-adjoint operator in H. An
operator A ∈ [H+,H−] is called a quasi-self-adjoint bi-extension of an operator T

if A ⊃ T ⊃ Ȧ and A∗ ⊃ T ∗ ⊃ Ȧ.
We are mostly interested in the following type of quasi-self-adjoint bi-extensions.

Let T be a quasi-self-adjoint extension of Ȧ with nonempty resolvent set ρ(T ). A
quasi-self-adjoint bi-extension A of an operator T is called (see [1, Definition 3.3.5])

a (∗)-extension of T if ReA is a t-self-adjoint bi-extension of Ȧ. In what follows

we assume that Ȧ has deficiency indices (1, 1). In this case it is known [1] that

every quasi-self-adjoint extension T of Ȧ admits (∗)-extensions. The description of
all (∗)-extensions via Riesz-Berezansky operator R can be found in [1, Section 4.3].

Recall that a linear operator T in a Hilbert space H is called accretive [19]
if Re (Tf, f) ≥ 0 for all f ∈ Dom(T ). We call an accretive operator T β-sectorial
[19] if there exists a value of β ∈ (0, π/2) such that

(2) (cotβ)| Im(Tf, f)| ≤ Re (Tf, f), f ∈ Dom(T ).

We say that the angle of sectoriality β is exact for a β-sectorial operator T if

tanβ = sup
f∈Dom(T )

| Im(Tf, f)|
Re (Tf, f)

.

An accretive operator is called extremal accretive if it is not β-sectorial for any
β ∈ (0, π/2). A (∗)-extension A of T is called accretive if Re (Af, f) ≥ 0 for all
f ∈ H+. This is equivalent to that the real part ReA = (A+A∗)/2 is a nonnegative

t-self-adjoint bi-extension of Ȧ.
A (∗)-extensions A of an operator T is called accumulative (see [1]) if

(3) (ReAf, f) ≤ (Ȧ∗f, f) + (f, Ȧ∗f), f ∈ H+.

The definition below is a “lite” version of the definition of L-system given for
a scattering L-system with one-dimensional input-output space. It is tailored for
the case when the symmetric operator of an L-system has deficiency indices (1, 1).
The general definition of an L-system can be found in [1, Definition 6.3.4] (see also
[11] for a non-canonical version).
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Definition 1. An array

(4) Θ =

(

A K 1
H+ ⊂ H ⊂ H− C

)

is called an L-system if:

(1) T is a dissipative (Im(Tf, f) ≥ 0, f ∈ Dom(T )) quasi-self-adjoint exten-

sion of a symmetric operator Ȧ with deficiency indices (1, 1);
(2) A is a (∗)-extension of T ;
(3) ImA = KK∗, where K ∈ [C,H−] and K

∗ ∈ [H+,C].

Operators T and A are called a main and state-space operators respectively of
the system Θ, and K is a channel operator. It is easy to see that the operator A of
the system (4) is such that ImA = (·, χ)χ, χ ∈ H− and pick Kc = c · χ, c ∈ C (see

[1]). A system Θ in (4) is called minimal if the operator Ȧ is a prime operator in H,
i.e., there exists no non-trivial reducing invariant subspace of H on which it induces
a self-adjoint operator. Minimal L-systems of the form (4) with one-dimensional
input-output space were also considered in [5].

We associate with an L-system Θ the function

(5) WΘ(z) = I − 2iK∗(A− zI)−1K, z ∈ ρ(T ),

which is called the transfer function of the L-system Θ. We also consider the
function

(6) VΘ(z) = K∗(ReA− zI)−1K,

that is called the impedance function of an L-system Θ of the form (4). The
transfer function WΘ(z) of the L-system Θ and function VΘ(z) of the form (6) are
connected by the following relations valid for Im z 6= 0, z ∈ ρ(T ),

VΘ(z) = i[WΘ(z) + I]−1[WΘ(z)− I],

WΘ(z) = (I + iVΘ(z))
−1(I − iVΘ(z)).

We say that an L-system Θ of the form (4) is called an accretive L-system ([10],
[16]) if its state-space operator operator A is accretive, that is Re (Af, f) ≥ 0 for all
f ∈ H+, and accumulative ([9]) if its state-space operator A is accumulative, i.e.,
satisfies (3). It is easy to see that if an L-system is accumulative, then (3) implies

that the operator Ȧ of the system is non-negative and both operators T and T ∗

are accretive. We also associate another operator Ã to an accumulative L-system
Θ. It is given by

(7) Ã = 2Re Ȧ∗ − A,

where Ȧ∗ is in [H+,H−]. Obviously, Re Ȧ∗ ∈ [H+,H−] and Ã ∈ [H+,H−]. Clearly,

Ã is a bi-extension of Ȧ and is accretive if and only if A is accumulative. It is also
not hard to see that even though Ã is not a (∗)-extensions of the operator T but

the form (Ãf, f), f ∈ H+ extends the form (f, T f), f ∈ Dom(T ). An accretive
L-system is called sectorial if the operator A is sectorial, i.e., satisfies (2) for some
β ∈ (0, π/2) and all f ∈ H+. Similarly, an accumulative L-system is sectorial if

its operator Ã of the form (7) is sectorial.
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3. Sectorial classes of inverse Stieltjes functions

It is known that a scalar function V (z) is called the Herglotz-Nevanlinna func-
tion if it is holomorphic on C \ R, symmetric with respect to the real axis, i.e.,
V (z)∗ = V (z̄), z ∈ C \ R, and if it satisfies the positivity condition ImV (z) ≥ 0,
z ∈ C+. A complete description of the class of all Herglotz-Nevanlinna functions,
that can be realized as impedance functions of L-systems can be found in [1], [5],
[15], [17]. A scalar Herglotz-Nevanlinna function V (z) is a Stieltjes function (see
[18]) if it is holomorphic in Ext[0,+∞) and

(8)
Im[zV (z)]

Im z
≥ 0.

Now we turn to the definition of inverse Stieltjes functions (see [18], [1]). A scalar
Herglotz-Nevanlinna function V (z) is called inverse Stieltjes if V (z) it is holo-
morphic in Ext[0,+∞) and

(9)
Im[V (z)/z]

Im z
≥ 0.

We will consider the inverse Stieltjes function V (z) that admit (see [18]) the fol-
lowing integral representation

(10) V (z) = γ +

∫ ∞

0

(

1

t− z
− 1

t

)

dG(t),

where γ ≤ 0 and G(t) is a non-decreasing on [0,+∞) function such that
∫∞
0

dG(t)
t+t2 <

∞. The following definition provides the description of a realizable subclass of
inverse Stieltjes functions. A scalar inverse Stieltjes function V (z) is a member of
the class S−1

0 (R) if the measure G(t) in representation (10) is unbounded.It was

shown in [1, Section 9.9] that a function V (z) belongs to the class S−1
0 (R) if and

only if it can be realized as impedance function of an accumulative L-system Θ of
the form (4) with a non-negative densely defined symmetric operator Ȧ.

The definition of sectorial subclasses S−1,β of scalar inverse Stieltjes func-
tions is the following. An inverse Stieltjes function V (z) belongs to S−1,β if

(11) Kβ =

n
∑

k,l=1

[

V (zk)/zk − V (z̄l)/z̄l
zk − z̄l

− (cotβ)
V (z̄l)

z̄l

V (zk)

zk

]

hkh̄l ≥ 0,

for an arbitrary sequences of complex numbers {zk}, (Im zk > 0) and {hk}, (k =
1, ..., n). For 0 < β1 < β2 <

π
2 , we have

S−1,β1 ⊂ S−1,β2 ⊂ S−1,

where S−1 denotes the class of all inverse Stieltjes functions (which corresponds to
the case β = π

2 ).
Let Θ be an accumulative minimal L-system of the form (4). It was shown in

[12] that the impedance function VΘ(z) defined by (6) belongs to the class S−1,β if

and only if the operator Ã of the form (7) associated to the L-system Θ is β-sectorial.
Let 0 ≤ β1 <

π
2 , 0 < β2 ≤ π

2 , and β1 ≤ β2. We say that a scalar inverse

Stieltjes function V (z) of the class S−1
0 (R) belongs to the class S−1,β1,β2 if

(12) tan(π − β1) = lim
x→0

V (x), tan(π − β2) = lim
x→−∞

V (x).
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The following connection between the classes S−1,β and S−1,β1,β2 was established in
[12]. Let Θ be an accumulative L-system of the form (4) with a densely defined non-

negative symmetric operator Ȧ. Let also Ã of the form (7) be β-sectorial. Then the
impedance function VΘ(z) defined by (6) belongs to the class S−1,β1,β2 . Moreover,
the operator T of Θ is (β2−β1)-sectorial with the exact angle of sectoriality (β2−β1),
and tanβ2 ≤ tanβ. Note, that this also remains valid for the case when the operator
Ã is accretive but not β-sectorial for any β ∈ (0, π/2). It also follows that under
the same set of assumptions, if β is the exact angle of sectoriality of the operator
T , then VΘ(z) ∈ S−1,0,β and is such that γ = 0 in (10).

Let Θ be a minimal accumulative L-system of the form (4) as above. Let also

Ã be defined via (7). It was shown in [12] that if the impedance function VΘ(z)

belongs to the class S−1,β1,β2 and β2 6= π/2, then Ã is β-sectorial, where tanβ is
defined via

(13) tanβ = tanβ2 + 2
√

tanβ1(tanβ2 − tanβ1).

Moreover, both Ã and T are β-sectorial operators with the exact angle β ∈ (0, π/2)
if and only if VΘ(z) ∈ S−1,0,β and

(14) tanβ =

∫ ∞

0

dG(t)

t
,

where G(t) is the measure from integral representation (10) of VΘ(z) (see [12,
Theorem 13]).

4. Construction of a Schrödinger L-system

Consider H = L2[ℓ,+∞), ℓ ≥ 0, and l(y) = −y′′ + q(x)y, where q is a real
locally summable on [ℓ,+∞) function. Suppose that the symmetric operator

(15)

{

Ȧy = −y′′ + q(x)y
y(ℓ) = y′(ℓ) = 0

has deficiency indices (1,1). Let D∗ be the set of functions locally absolutely con-
tinuous together with their first derivatives such that l(y) ∈ L2[ℓ,+∞). Consider

H+ = Dom(Ȧ∗) = D∗ with the scalar product

(y, z)+ =

∫ ∞

ℓ

(

y(x)z(x) + l(y)l(z)
)

dx, y, z ∈ D∗.

Let H+ ⊂ L2[ℓ,+∞) ⊂ H− be the corresponding triplet of Hilbert spaces and the
operators Th and T ∗

h are

(16)

{

Thy = l(y) = −y′′ + q(x)y
hy(ℓ)− y′(ℓ) = 0

,

{

T ∗
hy = l(y) = −y′′ + q(x)y

hy(ℓ)− y′(ℓ) = 0
,

where Imh > 0. Suppose Ȧ is a symmetric operator of the form (15) with deficiency
indices (1,1), generated by the differential operation l(y) = −y′′ + q(x)y. Let also
ϕk(x, λ)(k = 1, 2) be the solutions of the following Cauchy problems:







l(ϕ1) = λϕ1

ϕ1(ℓ, λ) = 0
ϕ′
1(ℓ, λ) = 1

,







l(ϕ2) = λϕ2

ϕ2(ℓ, λ) = −1
ϕ′
2(ℓ, λ) = 0

.
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It is well known [22], [20] that there exists a function m∞(λ) introduced by H. Weyl
[29] for which

ϕ(x, λ) = ϕ2(x, λ) +m∞(λ)ϕ1(x, λ)

belongs to L2[ℓ,+∞). It is important for our discussion that the function m∞(λ)
is not a Herglotz-Nevanlinna function but (−m∞(λ)) and (1/m∞(λ)) are (see [20],
[22]).

A construction of an L-system associated with a non-self-adjoint Schrödinger
operator Th was thoroughly described in [1]. In particular, it was shown (see also
[3]) that the set of all (∗)-extensions of the non-self-adjoint Schrödinger operator
Th of the form (16) in L2(ℓ,+∞) is given by

Aµ,h y = −y′′ + q(x)y − 1

µ− h
[y′(ℓ)− hy(ℓ)] [µδ(x− ℓ) + δ′(x− ℓ)],

A
∗
µ,h y = −y′′ + q(x)y − 1

µ− h
[y′(ℓ)− hy(ℓ)] [µδ(x− ℓ) + δ′(x− ℓ)].

(17)

Note that the formulas (17) establish a one-to-one correspondence between the
set of all (∗)-extensions of a Schrödinger operator Th of the form (16) and all real
numbers µ ∈ [−∞,+∞]. It is easy to check that the (∗)-extension A in (17) satisfies
the condition

ImAµ,h =
Aµ,h − A∗

µ,h

2i
= (., gµ,h)gµ,h,

where

(18) gµ,h =
(Im h)

1

2

|µ− h| [µδ(x− ℓ) + δ′(x− ℓ)]

and δ(x − ℓ), δ′(x − ℓ) are the delta-function and its derivative at the point ℓ,
respectively. Furthermore,

(y, gµ,h) =
(Imh)

1

2

|µ− h| [µy(ℓ)− y′(ℓ)],

where y ∈ H+, gµ,h ∈ H−, and H+ ⊂ L2[ℓ,+∞) ⊂ H− is the triplet of Hilbert
spaces discussed above.

It was also shown in [1] that the quasi-kernel Âξ of ReAµ,h is given by

(19)

{

Âξy = −y′′ + q(x)y
y′(ℓ) = ξy(ℓ)

, where ξ =
µReh− |h|2
µ− Reh

.

Take operator Kµ,hc = cgµ,h, (c ∈ C). Clearly,

(20) K∗
µ,hy = (y, gµ,h), y ∈ H+,

and ImAµ,h = Kµ,hK
∗
µ,h. Therefore,

(21) Θµ,h =

(

Aµ,h Kµ,h 1
H+ ⊂ L2[ℓ,+∞) ⊂ H− C

)

,

is an L-system with the main operator Th, (Imh > 0) of the form (16), the state-
space operator Aµ,h of the form (17), and with the channel operator Kµ,h of the
form (20). In what follows we will refer to Θµ,h as a Schrödinger L-system. It was
established in [3], [1] that the transfer and impedance functions of Θµ,h are

(22) WΘµ,h
(z) =

µ− h

µ− h

m∞(z) + h

m∞(z) + h
,
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and

(23) VΘµ,h
(z) =

(m∞(z) + µ) Imh

(µ− Reh)m∞(z) + µReh− |h|2 .

5. Schrödinger L-system realizations of −m∞(z), 1/m∞(z) and mα(z)

As we have already mentioned in Section 4, the original Weyl-Titchmarsh func-
tion m∞(z) has a property that (−m∞(z)) is a Herglotz-Nevanlinna function (see
[20], [22]). A problem whether (−m∞(z)) can be realized as the impedance func-
tion of a Schrödinger L-system was solved in the following theorem proved in [7].

Theorem 2 ([7]). Let Ȧ be a symmetric Schrödinger operator of the form (15)
with deficiency indices (1, 1) and locally summable potential in H = L2[ℓ,∞). If

m∞(z) is the Weyl-Titchmarsh function of Ȧ, then the Herglotz-Nevanlinna func-
tion (−m∞(z)) can be realized as the impedance function of a Schrödinger L-system
Θµ,h of the form (21) with µ = 0 and h = i.

Conversely, let Θµ,h be a Schrödinger L-system of the form (21) with the sym-

metric operator Ȧ such that VΘµ,h
(z) = −m∞(z), for all z ∈ C± and µ ∈ R∪{∞}.

Then the parameters µ and h defining Θµ,h are such that µ = 0 and h = i.

An analogues result for the function 1/m∞(z) also takes place (see [7]).

Theorem 3 ([7]). Let Ȧ be a symmetric Schrödinger operator of the form (15)
with deficiency indices (1, 1) and locally summable potential in H = L2[ℓ,∞). If

m∞(z) is the Weyl-Titchmarsh function of Ȧ, then the Herglotz-Nevanlinna func-
tion (1/m∞(z)) can be realized as the impedance function of a Schrödinger L-system
Θµ,h of the form (21) with µ = ∞ and h = i.

Conversely, let Θµ,h be a Schrödinger L-system of the form (21) with the sym-

metric operator Ȧ such that VΘµ,h
(z) = 1

m∞(z) , for all z ∈ C± and µ ∈ R ∪ {∞}.
Then the parameters µ and h defining Θµ,h are such that µ = ∞ and h = i.

One can note that both L-systems Θ0,i and Θ∞,i obtained in Theorems 2 and
3 share the same main operator

(24)

{

Ti y = −y′′ + q(x)y
y′(ℓ) = i y(ℓ)

.

The Weyl-Titchmarsh functions mα(z) are defined as follows. Let Ȧ be a
symmetric operator of the form (15) with deficiency indices (1,1), generated by the
differential operation l(y) = −y′′ + q(x)y. Let also ϕα(x, z) and θα(x, z) be the
solutions of the following Cauchy problems:







l(ϕα) = zϕα

ϕα(ℓ, z) = sinα
ϕ′
α(ℓ, z) = − cosα

,







l(θα) = zθα
θα(ℓ, z) = cosα
θ′α(ℓ, z) = sinα

.

One can show [14], [22], [23] that there exists an analytic in C± function mα(z)
for which

(25) ψ(x, z) = θα(x, z) +mα(z)ϕα(x, z)

belongs to L2[ℓ,+∞). It is easy to see that if α = π, then mπ(z) = m∞(z). The
functions mα(z) and m∞(z) are connected (see [14], [23]) by

(26) mα(z) =
sinα+m∞(z) cosα

cosα−m∞(z) sinα
.
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It is known [22], [23] that for any real α the function −mα(z) is a Herglotz-
Nevanlinna function. Also, (26) yields

(27) −mα(z) =
sinα+m∞(z) cosα

− cosα+m∞(z) sinα
=

cosα+ 1
m∞(z) sinα

sinα− 1
m∞(z) cosα

.

The theorem below was proved in [7] for Herglotz-Nevanlinna functions −mα(z)
and is similar to Theorem 2.

Theorem 4 ([7]). Let Ȧ be a symmetric Schrödinger operator of the form (15)
with deficiency indices (1, 1) and locally summable potential in H = L2[ℓ,∞). If

mα(z) is the function of Ȧ described in (25), then the Herglotz-Nevanlinna function
(−mα(z)) can be realized as the impedance function of a Schrödinger L-system Θµ,h

of the form (21) with

(28) µ = tanα and h = i.

Conversely, let Θµ,h be a Schrödinger L-system of the form (21) with the sym-

metric operator Ȧ such that

VΘµ,h
(z) = −mα(z),

for all z ∈ C± and µ ∈ R ∪ {∞}. Then the parameters µ and h defining Θµ,h are
given by (28), i.e., µ = tanα and h = i.

Clearly, when α = π we obtain µα = 0, mπ(z) = m∞(z), and the realizing
L-system Θ0,i is thoroughly described in [7, Section 5]. If α = π/2, then we get
µα = ∞, −mα(z) = 1/m∞(z), and the realizing L-system is Θ∞,i (see [7, Section
5]). Excluding the cases when α = π or α = π/2, we give the description of a
Schrödinger L-system Θµα,i realizing −mα(z) for α ∈ (0, π] as follows

(29) Θtanα,i =

(

Atanα,i Ktanα,i 1
H+ ⊂ L2[ℓ,+∞) ⊂ H− C

)

,

where

Atanα,i y = l(y)− 1

tanα− i
[y′(ℓ)− iy(ℓ)][(tanα)δ(x − ℓ) + δ′(x− ℓ)],

A
∗
tanα,i y = l(y)− 1

tanα+ i
[y′(ℓ) + iy(ℓ)][(tanα)δ(x − ℓ) + δ′(x− ℓ)],

(30)

Ktanα,i c = c gtanα,i, (c ∈ C) and

(31) gtanα,i = (tanα)δ(x − ℓ) + δ′(x− ℓ).

It is also worth mentioning that

(32)

VΘtan α,i
(z) = −mα(z)

WΘtan α,i
(z) =

tanα− i

tanα+ i
· m∞(z)− i

m∞(z) + i
= (−e2αi) m∞(z)− i

m∞(z) + i
.

Similar to Theorem 3 results for the functions 1/mα(z) can be found in [7].
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6. Accumulative Schrödinger L-systems

In this section we assume that Ȧ is a non-negative (i.e., (Ȧf, f) ≥ 0 for all

f ∈ Dom(Ȧ)) symmetric operator of the form (15) with deficiency indices (1,1),
generated by the differential operation l(y) = −y′′ + q(x)y. The following theorem
takes place.

Theorem 5 ([25], [26], [27]). Let Ȧ be a nonnegative symmetric Schrödinger
operator of the form (15) with deficiency indices (1, 1) and locally summable poten-
tial in H = L2[ℓ,∞). Consider operator Th of the form (16). Then

(1) operator Ȧ has more than one non-negative self-adjoint extension, i.e.,
the Friedrichs extension AF and the Krĕın-von Neumann extension AK

do not coincide, if and only if m∞(−0) <∞;
(2) operator Th, (h = h̄) coincides with the Krĕın-von Neumann extension

AK if and only if h = −m∞(−0);
(3) operator Th is accretive if and only if

(33) Reh ≥ −m∞(−0);

(4) operator Th, (h 6= h̄) is β-sectorial if and only if Reh > −m∞(−0) holds;
(5) operator Th, (h 6= h̄) is accretive but not β-sectorial for any β ∈ (0, π2 ) if

and only if Reh = −m∞(−0)
(6) If Th, (Imh > 0) is β-sectorial, then the exact angle β can be calculated

via

(34) tanβ =
Imh

Reh+m∞(−0)
.

In what follows, we assume that m∞(−0) < ∞. Then according to Theorem
5 (see also [2], [24], [27]) the operator Th, (Im h > 0) of the form (16) is accretive
and/or sectorial. If in this case Th is accretive, then (see [1]) for all real µ satisfying
the inequality

(35) µ ≥ (Imh)2

m∞(−0) + Reh
+Reh,

formulas (17) define the set of all accretive (∗)-extensions Aµ,h of Th. Moreover,
Aµ,h is accretive but not β-sectorial for any β ∈ (0, π/2) (∗)-extension of Th if and
only if in (17)

(36) µ =
(Imh)2

m∞(−0) + Reh
+Reh,

(see [8, Theorem 4]). It is also shown in [1] that (∗)-extensions Aµ,h of the operator
Th are accumulative if and only if

(37) −m∞(−0) ≤ µ ≤ Reh.

Using formulas (17) and direct calculations (see also [8]) one can obtain the formula

for operator Ãµ,h of the form (7) as follows

(38)

Ãµ,hy = −y′′ + q(x)y − y′(a)δ(x− a)− y(a)δ′(x − a)

+
1

µ− h
[y′(a)− hy(a)] [µδ(x − a) + δ′(x− a)].
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0
µ = tanα

1
m∞(−0)

−m∞(−0)

Θtanα,i - accumulative Θtanα,i - accretive

Figure 1. Accumulative and accretive L-systems Θtanα,i.

Consider the functions mα(z) described by (25)-(26) and associated with the

non-negative operator Ȧ above. Let us observe how the parameter α in the defini-
tion of mα(z) effects the L-system realizing (−mα(z)). Part of this question was
answered in [7, Theorem 6.3]. It was shown that if the non-negative symmetric
Schrödinger operator is such that m∞(−0) ≥ 0, then the L-system Θtanα,i of the
form (29) realizing the function (−mα(z)) is accretive if and only if

(39) tanα ≥ 1

m∞(−0)
.

We are going to use inequality (37) to see the values of µ = tanα that generate
accumulative L-systems Θtanα,i. This approach yields

(40) −m∞(−0) ≤ tanα ≤ 0.

The established criteria for a function (−mα(z)) to be realized with an accretive
or accumulative L-system Θtanα,i are graphically shown on Figure 1. This figure
describes the dependence of the properties of realizing (−mα(z)) L-systems on the
value of µ and hence α. The bold part of the real line depicts values of µ = tanα
that produce accretive or accumulative L-systems Θµ,i.

Note that if m∞(−0) = 0 in (39), then α = π/2 and −mπ
2
(z) = 1/m∞(z).

Moreover, we know that if m∞(−0) ≥ 0, then 1/m∞(z) is realized by an accre-
tive system Θ∞,i (see [7, Theorem 6.2]). We also note that when tanα = 0 and
hence α = 0 we obtain m0(z) = m∞(z), and the realizing −m∞(z) Schrödinger
L-system is Θ0,i. The following theorem shows how the additional requirement of
non-negativity affects the realization of functions −m∞(z) and 1/m∞(z).

Theorem 6. Let Ȧ be a non-negative symmetric Schrödinger operator of the
form (15) with deficiency indices (1, 1) and locally summable potential in H =

L2[ℓ,∞). If m∞(z) is the Weyl-Titchmarsh function of Ȧ such that m∞(−0) ≥ 0,
then the L-system Θ0,i realizing the function (−m∞(z)) is accumulative and the
L-system Θ∞,i realizing the function 1/m∞(z) is accretive.

Proof. Since m∞(−0) ≥ 0, we can apply (40) to conclude that −m0(z) =
−m∞(z) ≤ 0 implies that the L-system Θ0,i realizing the function (−m∞(z)) is
accumulative (see [1, Section 9.9]). The fact that the L-system Θ∞,i realizing the
function 1/m∞(z) is accretive under the conditions of current theorem was proved
in [7]. �

Remark 7. Some of analytic properties of the functions (−m∞(z)), 1/m∞(z),
and (−mα(z)) were described in [7, Theorem 6.5]. Taking into account these results
and the above reasoning we have that under the current set of assumptions:
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(1) the function 1/m∞(z) is Stieltjes if and only if m∞(−0) ≥ 0;
(2) the function (−m∞(z)) is inverse Stieltjes if and only if m∞(−0) ≥ 0;
(3) the function (−mα(z)) given by (26) is Stieltjes if and only if

0 <
1

m∞(−0)
≤ tanα,

and inverse Stieltjes if and only if

−m∞(−0) ≤ tanα ≤ 0.

Now once we established a criteria for an L-system realizing (−mα(z)) to be
accumulative, we can look into more of its properties. We are going to turn to
the case when our realizing L-system Θtanα,i is accumulative sectorial. To begin
with let Θµ,h be an L-system of the form (21), where Aµ,h is an accumulative (∗)-
extension (17) of the accretive Schrödinger operator Th. Let also Ãµ,h be of the
form (38). Below is the list of some known facts about possible accumulativity and
sectoriality of Θµ,h.

• If Ãµ,h of the form (38) is β-sectorial, then the impedance function VΘµ,h
(z)

defined by (6) belongs to the class S−1,β1,β2 .
• The operator Th of Θµ,h is (β2 − β1)-sectorial with the exact angle of
sectoriality (β2 − β1), and tanβ2 ≤ tanβ.

• In the case when β1 = 0 and β2 = π/2 the operator Th is accretive but
not β-sectorial.

• If β is the exact angle of sectoriality of the operator Th, then VΘµ,h
(z) ∈

S−1,0,β.
• if the impedance function VΘµ,h

(z) belongs to the class S−1,β1,β2 , then

Ãµ,h is β-sectorial, where tanβ is defined via (13).

• Both Ãµ,h and Th are β-sectorial operators with the exact angle β ∈
(0, π/2) if and only if VΘµ,h

(z) ∈ S−1,0,β and tanβ is given by (14).

Consider a function (−mα(z)) and Schrödinger L-system Θtanα,i of the form
(29) that realizes it. According to Theorem 6 this L-system Θtanα,i can be accumu-
lative if and only if (40) holds, that is −m∞(−0) ≤ tanα ≤ 0. Moreover, according
to [8, Theorem 6], Θtanα,i is accumulative sectorial if and only if

(41) −m∞(−0) ≤ tanα < 0,

and accumulative extremal (see [8, Theorem 7]) if and only if tanα = 0. Also,
if we assume that L-system Θtanα,i is β-sectorial, then its impedance function
VΘtan α,i

(z) = −mα(z) belongs (see [12]) to certain sectorial classes of inverse Stielt-

jes functions discussed in Section 3. Namely, (−mα(z)) ∈ S−1,β . The following
theorem provides more refined properties of (−mα(z)) for this case.

Theorem 8. Let Θtanα,i be the accumulative L-system of the form (29) real-

izing the function (−mα(z)) associated with the non-negative operator Ȧ. Let also

Ãtanα,i be a β-sectorial operator associated with Θtanα,i and defined by (7). Then
the function (−mα(z)) belongs to the class S−1,β1,β2 , tanβ2 ≤ tanβ, and

(42) tanβ1 =
tanα+m∞(−0)

1− (tanα)m∞(−0)
,

and

(43) tanβ2 = − cotα.
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0

µ = tanα

−m∞(−0)

Ãtanα,i - preserves angle Ãtanα,i - extremal

Figure 2. Associated operator Ãtanα,i.

Moreover, the operator Ti is (β2 − β1)-sectorial with the exact angle of sectoriality
(β2 − β1).

Proof. It is given that Θtanα,i is accumulative and hence (41) holds. For
further convenience we re-write (−mα(z)) as

(44) −mα(z) =
sinα+m∞(z) cosα

− cosα+m∞(z) sinα
=

tanα+m∞(z)

(tanα)m∞(z)− 1
.

Since under our assumption Ãtanα,i is β-sectorial, then (see [12], [8]) the impedance
function VΘtan α,i

(z) = −mα(z) belongs to certain sectorial classes discussed in

Section 3. Particularly, −mα(z) ∈ S−1,β and −mα(z) ∈ S−1,β1,β2 , where (see [8])

tan(π − β1) = − tanβ1 = lim
x→−0

(−mα(x)) =
tanα+m∞(−0)

(tanα)m∞(−0)− 1
,

and

tan(π − β2) = − tanβ2 = lim
x→−∞

(−mα(x)) =
tanα+m∞(−∞)

(tanα)m∞(−∞)− 1

=

tanα
m∞(−∞) + 1

tanα− 1
m∞(−∞)

=
1

tanα
= cotα.

Multiplying the above by (−1) one confirms (42) and (43). In order to show the rest,

we apply [12, Theorem 9]. This theorem states that if Ã is a β-sectorial operator
of the form (6) associated to an accumulative L-system Θ, then the impedance
function VΘ(z) belongs to the class S−1,β1,β2 , tanβ2 ≤ tanβ, and T is (β2 − β1)-
sectorial with the exact angle of sectoriality (β2 − β1). �

The next theorem explains two “endpoint” cases of accumulative realization
for the function (−mα(z)).

Theorem 9. Let Θtanα,i be the accumulative L-system of the form (29) real-
izing the function (−mα(z)) with a sectorial main operator Ti whose exact angle of

sectoriality is β ∈ (0, π/2). Let also Ãtanα,i be an associated operator defined by
(6). Then

(1) Ãtanα,i is β-sectorial (with the same angle of sectoriality as Ti) if and
only if tanα = −m∞(−0) in (38);

(2) Ãtanα,i is accretive but not β-sectorial for any β ∈ (0, π/2) if and only if
in (17) α = 0.

Proof. The proof directly follows from [8, Theorems 6 and 7] after one sets
µ = tanα = −m∞(−0) for part (1) and µ = Reh = tan 0 = 0 for part (2). �
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0
α

α0

tanβ

tan θ

α∗

Figure 3. Angle of sectoriality β. Here α0 = arctan(−m∞(−0)).

The result of Theorem 9 is graphically illustrated by Figure 2. Also we have
shown that within the conditions of Theorem 9 the α-sectorial sesquilinear form
(f, T f) defined on a subspace Dom(T ) ofH+ can be extended to the α-sectorial form

(Ãf, f) defined on H+ preserving the exact (for both forms) angle of sectoriality
α. A general problem of extending sectorial sesquilinear forms was mentioned by
T. Kato in [19].

Now we state and prove the following.

Theorem 10. Let Θtanα,i be an accumulative L-system of the form (29) that
realizes (−mα(z)) with the main θ-sectorial operator Ti whose exact sectoriality
angle is θ. Let also α∗ ∈ (arctan(−m∞(−0)), 0) be a fixed value that defines the

associated operator Ãtanα∗,i via (6), (17), and (−mα(z)) ∈ S−1,β1,β2 . Then the

associated operator Ãtanα,i is β-sectorial for any α ∈ (arctan(−m∞(−0)), α∗) with

(45) tanβ = tanβ1 + 2
√

tanβ1 tanβ2.

Moreover, if α = arctan(−m∞(−0)), then

β = θ = arctan

(

1

m∞(−0)

)

.

Proof. We note first that the conditions of our theorem imply the following:
tanα∗ ∈ (−m∞(−0), 0). Thus, according to [7, Theorem 8] applied for µ = tanα

the operator Ãtanα,i is β-sectorial for some β ∈ (0, π/2) for any α such that

−m∞(−0) ≤ tanα < tanα∗.

Formula (45) also follows from the corresponding formula in [7, Theorem 8] taken
into account that β1 and β2 are defined via (42) and (43), respectively. Finally,
since Ti is θ-sectorial, formula (34) yields tan θ = 1

m∞(−0) . Applying part (1) of

Theorem 9 gives us that β = θ. This completes the proof. �

Note that Theorem 10 provides us with a value β which serves as a universal
angle of sectoriality for the entire indexed family of associated operators Ã of the
form (38) as depicted on Figure 3.
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7. Example

Consider the differential expression with the Bessel potential

lν = − d2

dx2
+
ν2 − 1/4

x2
, x ∈ [1,∞)

of order ν > 0 in the Hilbert space H = L2[1,∞). The minimal symmetric operator

(46)

{

Ȧ y = −y′′ + ν2−1/4
x2 y

y(1) = y′(1) = 0

generated by this expression and boundary conditions has defect numbers (1, 1).
Let ν = 3/2. It is known [1] that in this case

m∞(z) = 1− iz√
z + i

and m∞(−0) = 1. The minimal symmetric operator then becomes

(47)

{

Ȧ y = −y′′ + 2
x2 y

y(1) = y′(1) = 0.

Consider operator Th of the form (16) that is written for h = i as

(48)

{

Ti y = −y′′ + 2
x2 y

y′(1) = i y(1)
.

This operator Ti will be shared as the main operator by the family of L-systems
realizing functions (−mα(z)) in (25)-(26). It is accretive and β-sectorial since
Reh = 0 > −m∞(−0) = −1 and has the exact angle of sectoriality given by
(see (34))

(49) tanβ =
Imh

Reh+m∞(−0)
=

1

0 + 1
= 1 or β =

π

4
.

The family of L-systems Θtanα,i of the form (29) that realizes functions

(50) −mα(z) =
(
√
z − iz + i) cosα+ (

√
z + i) sinα

(
√
z − iz + i) sinα− (

√
z + i) cosα

,

was constructed in [7]. According to (40) the L-systems Θtanα,i in (29) are accu-
mulative if

−1 = −m∞(−0) ≤ tanα ≤ 0.

Applying part (2) of Theorem 9, we get that the realizing L-system Θtanα,i in (29)

is such that the associated operator Ãtanα,i is extremal accretive if µ = tanα = 0
or α = 0. Therefore the L-system

(51) Θ0,i =

(

A0,i K0,i 1
H+ ⊂ L2[1,+0) ⊂ H− C

)

,

where

A0,i y = −y′′ + 2

x2
y − i [y′(1)− iy(1)] δ′(x− 1),

A
∗
0,i y = −y′′ + 2

x2
y + i [y′(1) + iy(1)] δ′(x− 1),

(52)
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K0,ic = cg0,i, (c ∈ C) and g0,i = δ′(x− 1). This L-system Θ0,i realizes the function
−m0(z) = −m∞(z). Also,

(53)

VΘ0,i
(z) = −m0(z) = −m∞(z) =

iz√
z + i

− 1

WΘ0,i
(z) = −m∞(z)− i

m∞(z) + i
=

(i− 1)
√
z + iz − 1− i

(1 + i)
√
z − iz − 1 + i

.

The associate operator Ã0,i is given by (38) as

Ã0,i y = −y′′ + 2

x2
y − y′(1)δ(x− 1)− y(1)δ′(x− 1) + [y(1) + iy′(1)] δ′(x − 1)

= −y′′ + 2

x2
y − y′(1)[δ(x− 1)− iδ′(x− 1)].

The adjoint operator Ã0,i is

Ã
∗
0,iy = −y′′ + 2

x2
y − y′(1)[δ(x − 1) + iδ′(x− 1)],

and consequently

Re Ã0,i y = −y′′ + 2

x2
y − y′(1)δ(x − 1) and Im Ã0,i y = y′(1)δ′(x− 1).

The operator Ã0,i above is accretive according to [12] which is also independently
confirmed by direct evaluation

(Re Ã0,i y, y) = ‖y′(x)‖2L2 + 2‖y(x)/x‖2L2 ≥ 0.

Moreover, according to Theorem 9 it is extremal, that is accretive but not β-
sectorial for any β ∈ (0, π/2). Indeed, it is easy to see that

(Im Ã0,i y, y) = −|y′(1)|2,
and hence we can have inequality (2) for all y ∈ H+ only if β = π

2 . Thus, this is
the case of the extremal operator. In addition, we have shown that the function
−m0(z) = −m∞(z) = iz√

z+i
− 1 in (53) belongs to the sectorial class S−1,0,π

2 of

inverse Stieltjes functions.

References
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[6] S. Belyi, E. Tsekanovskĭı, The original Weyl-Titchmarsh functions and sectorial Schrödinger

L-systems, Acta Wasaensia, vol. 462, (2021), 37-54. 1, 2
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[10] S. Belyi, E. Tsekanovskĭı, Stieltjes like functions and inverse problems for systems with

Schrödinger operator. Operators and Matrices, vol. 2, No.2, (2008), 265–296. 4
[11] S. Belyi, S. Hassi, H.S.V. de Snoo, E. Tsekanovskĭı, A general realization theorem for matrix-
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[27] E. Tsekanovskĭi, Non-self-adjoint accretive extensions of positive operators and theorems of

Friedrichs-Krein-Phillips. Funct. Anal. Appl. 14, 156–157 (1980) 10
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