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L-systems with Multiplication Operator and c-Entropy

S. Belyi, K. A. Makarov, and E. Tsekanovskii

Abstract. In this note, we utilize the concepts of c-entropy and the dissi-
pation coefficient in connection with canonical L-systems based on the mul-
tiplication (by a scalar) operator. Additionally, we examine the coupling of
such L-systems and derive explicit formulas for the associated c-entropy and
dissipation coefficient. In this context, we also introduce the concept of a
skew-adjoint L-system and analyze its coupling with the original L-system.
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1. Introduction

This paper is dedicated to the exploration of the relationships between various
subclasses of Herglotz-Nevanlinna functions and their conservative realizations as
impedance functions of L-system (see [1, 7, 6, 5, 3, 12]).

Recall the concept of a canonical L-system.
Let T be a bounded linear operator in a Hilbert space H. Suppose, in addition,

that E is another finite-dimensional Hilbert space, dimE < ∞. By a canonical
L-system we mean the array

(1) Θ =

(
T K J

H E

)
,

where K ∈ [E,H], J is a self-adjoint isometry in E such that ImT = KJK∗.
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Recall that the operator-valued function

WΘ(z) = I − 2iK∗(T − zI)−1KJ, z ∈ ρ(T ),

is called the transfer function of an L-system Θ, while

VΘ(z) = i[WΘ(z) + I]−1[WΘ(z)− I]J = K∗(ReT − zI)−1K, z ∈ ρ(T ) ∩C±,

is known as the impedance function of Θ. The formal definition of L-systems and
their elements are presented in Section 2.

The main goal of this note is to apply the concepts of c-entropy and dissi-
pation coefficient introduced in [4] and [3] to canonical L-systems based on the
multiplication operator.

The paper is organized as follows.
Section 2 contains necessary information on the L-systems theory.
In Section 3, we review the formal definition and discuss the fundamental prop-

erties of regular and generalized Donoghue classes with a bounded, compactly sup-
ported representing measure. In particular, we emphasize the connection between
the analytical theory of electrical circuits and the subclasses of rational functions
belonging to the Donoghue classes (see Remark 1).

Sections 4–7 of the paper contain the main results.
Section 4 describes a detailed construction of a canonical L-system associated

with the multiplication by a scalar operator. In this section, we also establish
criteria for the impedance function of such an L-system to belong to the Donoghue
classes with a bounded representing measure.

In Section 5, we revisit the concept of L-system coupling (see [8], [1]), and
apply it to the canonical L-systems with the multiplication operators introduced
in Section 4. We derive the explicit form of the coupling between two canonical
L-systems (with multiplication operators) and give an independent proof of the
Multiplication Theorem (see, e.g., [8, 14]) stating that the transfer function of this
coupling is equal to the product of the transfer functions associated with the factor
L-systems. As far as the corresponding impedance functions are concerned, we
demonstrate that when the coupling of two L-systems, whose impedance functions
belong to Donoghue classes, is formed, then the impedance of the resulting L-
system also belongs to the Donoghue class. Thus, the invariance (persistence) of
the Donoghue classes with respect to the coupling operation is established.

In Section 6, we revisit the definition of c-entropy and the dissipation coefficient,
focusing specifically on their application to canonical L-systems with multiplication
operators. We also obtain explicit representations for both c-entropy and the dissi-
pation coefficient, and show that c-entropy is additive with respect to the coupling
of two canonical L-systems (with multiplication operators).

In Section 7, we introduce the skew-adjoint L-systems associated with the
canonical L-systems defined by multiplication operators and examine the prop-
erties of c-entropy and dissipation coefficient in this setting (also see Remark 15
for the “inductor-capacitor network” interpretation for the coupling between two
elementary L-systems).

All the new results presented are summarized in Tables 1 and 2. The paper
concludes with illustrative examples that demonstrate the constructions discussed.
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2. Preliminaries

For a pair of Hilbert spaces H1, H2 denote by [H1,H2] the set of all bounded
linear operators from H1 to H2.

Let T be a bounded linear operator in a Hilbert space H, K ∈ [E,H], and J

be a bounded, self-adjoint, and unitary operator in E, where E is another Hilbert
space with dimE < ∞. Let also

(2) ImT = KJK∗.

By definition, the Livšic canonical system or simply canonical L-system

is just the array

(3) Θ =

(
T K J

H E

)
.

The spacesH and E here are called state and input-output spaces, and the operators
T , K, J will be refered to as main, channel, and directing operators, respectively.

Notice that relation (2) implies

(4) Ran(ImT ) ⊆ Ran(K).

We associate with an L-systemΘ two analytic functions, the transfer function
of the L-system Θ

(5) WΘ(z) = I − 2iK∗(T − zI)−1KJ, z ∈ ρ(T ), the resolvent set,

and also the impedance function given by the formula

(6) VΘ(z) = K∗(ReT − zI)−1K, z ∈ ρ(ReT ).

The transfer function WΘ(z) of the L-system Θ and function VΘ(z) of the form
(6) are connected by the following relations valid for Im z 6= 0, z ∈ ρ(T ),

(7)
VΘ(z) = i[WΘ(z) + I]−1[WΘ(z)− I]J,

WΘ(z) = (I + iVΘ(z)J)
−1(I − iVΘ(z)J).

Recall that the impedance function VΘ(z) of a canonical L-system admits the
integral representation (see, e.g., [1, Section 5.5], [8])

(8) VΘ(z) =

∫

R

dσ(t)

t− z
,

where σ is an operator-valued bounded Borel measure in E with the compact
support on R.

As far as the inverse problem is concerned, we refer to [1, 7, 11] and references
therein for the description of the class of all Herglotz-Nevanlinna functions that
admit realizations as impedance functions of an L-system.

3. Bounded Donoghue classes

Denote by N̂ the class of all scalar Herglotz-Nevanlinna functions M(z) that
admit the representation (8) where σ is a compactly supported bounded Borel
measure such that

(9)

∫

R

t

1 + t2
dσ(t) = 0.
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Observe that for a function M(z) ∈ N̂ condition (9) implies

M(i) =

∫

R

dσ(t)

t− i
=

∫

R

t

t2 + 1
dσ(t) + i

∫

R

dσ(t)

t2 + 1
= i

∫

R

dσ(t)

t2 + 1
.

Following the approach of [7, 5, 14, 15], given 0 ≤ κ < 1, denote by M̂, M̂κ

and M̂
−1
κ the subclass of N̂ satisfying the additional requirement that

(10)

∫

R

dσ(t)

1 + t2
= 1 , equivalently, M(i) = i,

(11)

∫

R

dσ(t)

1 + t2
=

1− κ

1 + κ
, equivalently, M(i) = i

1− κ

1 + κ
,

and

(12)

∫

R

dσ(t)

1 + t2
=

1 + κ

1− κ
, equivalently, M(i) = i

1 + κ

1− κ
,

respectively. Clearly,

M̂ = M̂0 = M̂
−1
0 .

It is easy to see that if M(z) is an arbitrary function from the class N̂ such
that

(13)

∫

R

dσ(t)

1 + t2
= a for some a > 0,

then M ∈ M̂ if and only if a = 1.

The membership of M ∈ N̂ in the other generalized Donoghue classes M̂κ and

M̂
−1
κ can also be described straightforwardly as follows:

if a < 1, then M ∈ M̂κ with

(14) κ =
1− a

1 + a
,

and

if a > 1, then M ∈ M̂
−1
κ with

(15) κ =
a− 1

1 + a
.

Remark 1. We note that rational functions from Donoghue classes taking
purely imaginary values on the imaginary axis can be characterized as follows. Sup-
pose that a rational function is given by

M(z) = −a0

z
+

n∑

k=1

ak
z

b2k − z2
, z ∈ C+,

where a0 ≥ 0 and ak > 0, bk > 0, k = 1, . . . , n. Clearly, the function M(z) admits
the representation (8)

M(z) =

∫

R

dσ(t)

t− z
,
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where σ(dt) is a singular (atomic) measure supported at the points −bn, . . . ,−b1, 0,
b1, . . . , bn with the weights 1

2an, . . . ,
1
2a1, a0,

1
2a1, . . . ,

1
2an, respectively. In particu-

lar, condition (9) holds, that is,
∫

R

t

1 + t2
dσ(t) = 0.

Moreover,

M(i) = i

(
a0 +

n∑

k=1

ak

b2k + 1

)
∈ iR+.

Therefore, the rational function M(z) belongs to one of the Donoghue classes M̂,

M̂κ and M̂
−1
κ depending on whether

a = a0 +

n∑

k=1

ak

b2k + 1

equals to, less than, or greater than one, respectively. Notice that the rational
function

Z(p) =
1

i
M(ip) =

a0

p
+

n∑

k=1

ak
p

b2k + p2

is a positive analytic function in the right half-plane, that is,

Z(p) + Z(p) > 0, Re (p) > 0,

takes real values on the positive semi-axis and has purely imaginary values on the
imaginary axis (for the definition of positive functions and their role in designing
(synthesis of) electrical circuits, we refer to [10]).

Since

Z(p) =
1
1
a0

p
+

n∑

k=1

1

(Lkp)
−1

+
(

1
Ckp

)−1 ,

where

Lk =
ak

b2k
and Ck =

1

ak
,

the function Z(p) determines the impedance of a series connection of a capacitor
C0 = 1

a0

and n parallel LC-circuits with inductance Lk and capacitance Ck, k =
1, . . . , n. We remark that if a0 = 0, the purely capacitive element of the circuit is
absent in this case. Figure 1 shows an electric circuit consisting of a single capacitor
and two LC-circuits connected in series.

4. L-systems with multiplication operator

Let H be a one dimensional Hilbert space with an inner product (·, ·) and a
normalized basis vector h0 ∈ H, (‖h0‖ = 1). For a fixed number λ0 ∈ C with
Imλ0 > 0 we introduce (see also [8]) a linear operator

(16) Th = λ0h, h ∈ H.

Clearly,

T ∗h = λ̄0h, ImTh = Imλ0h, and ReTh = Reλ0h, ∀h ∈ H.
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C0

C1 C2

L1 L2

Figure 1. Three-stage Series Electrical Circuit

We are going to include T into a simple L-system Θ, i.e., construct an L-system
where H is the state space and T is the main operator (see [8], [3]). Let K : C → H
be such that

(17) Kc = (
√
Imλ0 c)h0, ∀c ∈ C.

Then, the adjoint operator K∗ : H → C is

(18) K∗h = (h,
√
Imλ0 h0), ∀h ∈ H.

Note that for an arbitrary element h = Chh0 ∈ H, (Ch ∈ C) formulas (17) and (18)
imply

K∗h = K∗(Chh0) = Ch

√
Imλ0 and K Ch = (

√
Imλ0)h.

Therefore,

KK∗h = K(Ch

√
Imλ0) = (Imλ0)h.

Furthermore,

(19) ImTh = Imλ0h = (
√

Imλ0)(h,
√

Imλ0 h0)h0 = KK∗h, ∀h ∈ H.

Thus, we can construct an L-system of the form

(20) Θ =

(
T K 1
H C

)
,

where operators T and K are defined by (16) and (17), respectively. Taking into
account that

(T − zI)−1 =
1

λ0 − zI
,

for the transfer function WΘ(z) we have

(21) WΘ(z) = I − 2iK∗(T − zI)−1K = 1− 2i
Imλ0

λ0 − z
=

λ̄0 − z

λ0 − z
.

The corresponding impedance function (6) is easily found to be given by

(22) VΘ(z) = K∗(ReT − zI)−1K =
Imλ0

Reλ0 − z
.

By inspection, one confirms that VΘ(z) is a Herglotz-Nevanlinna function.
The following result provides conditions on when the impedance function of

the form (22) belongs to the Donoghue classes described in Section 3.

Theorem 2. Let Θ be an L-system (20) with the main operator T of the form
(16). Then the impedance function VΘ(z) belongs to the class:
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(1) M̂ if and only if λ0 = i;

(2) M̂κ if and only if λ0 = ai, 0 < a < 1;

(3) M̂
−1
κ if and only if λ0 = ai, a > 1.

Proof. Let us prove (1) first. It is well known (see [1]) that the impedance
function VΘ(z) of any L-system is a Herglotz-Nevanlinna function and hence has
integral representation (8). Consequently, VΘ(z) of the form (22) belongs to the

class M̂ if and only if VΘ(i) = i (condition (9) is satisfied automatically). Using
(22) yields

(23) VΘ(i) =
Imλ0

Reλ0 − i
=

Imλ0 · Reλ0 + i Imλ0

(Reλ0)2 + 1
=

Imλ0 ·Reλ0

(Reλ0)2 + 1
+i

Imλ0

(Reλ0)2 + 1
.

This expression on the right equals i if and only if Reλ0 = 0 and Imλ0 = 1, i.e.,
λ0 = i. This proves (1).

In order to prove (2), we compare (23) to formulas (11), (12), and (13). This

comparison yields that VΘ(z) of the form (22) belongs to the class M̂κ if

VΘ(i) = ai = (Imλ0)i, 0 < a = Imλ0 < 1.

Therefore, VΘ(z) ∈ M̂κ if and only if Reλ0 = 0 and Imλ0 < 1. Thus, λ0 = ai,
0 < a < 1. Also, in this case

(24) κ =
1− Imλ0

1 + Imλ0
.

Assertion (3) is proved similarly to (2) with an assumption that a = Imλ0 is

greater than 1. Moreover, here we have VΘ(z) ∈ M̂
−1
κ with

(25) κ =
Imλ0 − 1

1 + Imλ0
.

�

λ0 a κ Class

i a = 1 κ = 0 VΘ(z) ∈ M̂

ai 0 < a < 1 κ = 1−a
1+a

VΘ(z) ∈ M̂κ

ai a > 1 κ = a+1
1+a

VΘ(z) ∈ M̂
−1
κ

Table 1. Impedance function VΘ(z)

The results of Theorem 2 are summarized in Table 1.
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5. L-system coupling

In this section, following [8] (see also [1] and [6]), we introduce the coupling of
two L-systems with multiplication operator of the form (20).

Let (as above) H be a one-dimensional Hilbert space with the inner product
(·, ·) and a normalized basis vector h0 ∈ H, (‖h0‖ = 1). Suppose, in addition, that
T1 and T2 are multiplication operators in H of the form (16) given by

(26) T1h = λ0h and T2h = µ0h, h ∈ H.

Consider two L-systems of the form (20) based on T1 and T2, respectively,

(27) Θ1 =

(
T1 K1 1
H C

)
and Θ2 =

(
T2 K2 1
H C

)
,

where K1 : C → H and K2 : C → H are such that

(28) K1c = (
√
Imλ0 c)h0, and K2c = (

√
Imµ0 c)h0, ∀c ∈ C.

Recall (18) that the adjoint operators K∗
1 : H → C and K∗

2 : H → C are

(29) K∗
1h = (h,

√
Imλ0 h0), K∗

2h = (h,
√
Imµ0 h0), ∀h ∈ H.

Define an operator T acting on the Hilbert space H⊕H as

(30)

T

[
h1

h2

]
=

(
T1 2iK1K

∗
2

0 T2

)[
h1

h2

]
=

[
T1h1 + 2iK1K

∗
2h2

T2h2

]

=

[
λ0h1 + 2i

√
(Im λ0) · (Imµ0)h2

µ0h2

]
, ∀h1, h2 ∈ H.

Direct check reveals that

(31)

T∗

[
h1

h2

]
=

(
T ∗
1 0

−2iK2K
∗
1 T ∗

2

)[
h1

h2

]
=

[
T ∗
1 h1

T ∗
2 h2 − 2iK2K

∗
1h1

]

=

[
λ̄0h1

µ̄0h2 − 2i
√
(Imλ0) · (Imµ0)h1

]
, ∀h1, h2 ∈ H.

In addition to T we define an operator K : C → H⊕H as

(32) Kc =

[
K1c

K2c

]
=

[
(
√
Imλ0 c)h0

(
√
Imµ0 c)h0

]
.

In this case the adjoint operator K∗ : H ⊕H → C is defined for all h1, h2 ∈ H as
follows

(33) K∗

[
h1

h2

]
= K∗

1h1 +K∗
2h2 = (h1,

√
Imλ0 h0) + (h2,

√
Imµ0 h0).

One can confirm that

(34)

ImT

[
h1

h2

]
=

1

2i

(
2i ImT1 2iK1K

∗
2

2iK2K
∗
1 2i ImT2

)[
h1

h2

]

=

[
K1K

∗
1h1 +K1K

∗
2h2

K2K
∗
2h2 +K2K

∗
1h1

]
= KK∗

[
h1

h2

]
,

and hence ImT = KK∗.
Summarizing, we arrive at the following definition.
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Definition 3. Given two systems of the form (27)

Θ1 =

(
T1 K1 1
H C

)
and Θ2 =

(
T2 K2 1
H C

)
,

define the coupling of two L-systems as

Θ =

(
T K 1

H⊕H C

)
,

where the operators T and K are presented in (30)–(33).
In writing,

Θ = Θ1 ·Θ2.

The following theorem can be derived from a more general result [8, Theorem
3.1], however, for the convenience of the reader, we provide a simple proof of it.

Theorem 4 (cf. [8]). Let an L-system Θ be the coupling of two L-systems Θ1

and Θ2 of the form (27) with the main operators T1 and T2 given by (26). Then if
z ∈ ρ(T1) ∩ ρ(T2) = C \ {λ0, µ0}, we have

(35) WΘ(z) = WΘ1
(z) ·WΘ2

(z) =
λ̄0 − z

λ0 − z
· µ̄0 − z

µ0 − z
.

Proof. We are going to find the transfer function of the coupling Θ based on
its definition (5) and then show that it equals the right hand side of (35). Using
(30) and elementary calculations one finds

(36)

(T− zI)−1 =

(
λ0 − z 2i

√
Imλ0 · Imµ0

0 µ0 − z

)−1

=
1

(λ0 − z)(µ0 − z)

(
µ0 − z −2i

√
Imλ0 · Imµ0

0 λ0 − z

)
.

Taking in to account that

2i
√
Imλ0 · Imµ0 =

√
(λ0 − λ̄0)(µ0 − µ̄0),

we use (32), (33) with (36) and proceed to find

2iK∗(T− zI)−1K =
2i ((µ0 − z) Imλ0 − 2i Imλ0 Imµ0 + (λ0 − z) Imµ0)

(λ0 − z)(µ0 − z)

=
(λ0 − λ̄0)(µ̄0 − z) + (λ0 − z)(µ0 − µ̄0)

(λ0 − z)(µ0 − z)
.

Finally,

WΘ(z) = 1− 2iK∗(T − zI)−1K = 1− (λ0 − λ̄0)(µ̄0 − z) + (λ0 − z)(µ0 − µ̄0)

(λ0 − z)(µ0 − z)

=
(λ0 − z)(µ0 − z)− (λ0 − λ̄0)(µ̄0 − z)− (λ0 − z)(µ0 − µ̄0)

(λ0 − z)(µ0 − z)

=
(λ̄0 − z)(µ̄0 − z)

(λ0 − z)(µ0 − z)
=

λ̄0 − z

λ0 − z
· µ̄0 − z

µ0 − z
= WΘ1

(z) ·WΘ2
(z),

completing the proof. �
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The corresponding impedance function VΘ(z) of the coupling Θ can be found
using (7) as follows.

VΘ(z) = i
WΘ(z)− 1

WΘ(z) + 1
= i

λ̄0−z
λ0−z

· µ̄0−z
µ0−z

− 1

λ̄0−z
λ0−z

· µ̄0−z
µ0−z

+ 1
= i

(λ̄0 − z)(µ̄0 − z)− (λ0 − z)(µ0 − z)

(λ̄0 − z)(µ̄0 − z) + (λ0 − z)(µ0 − z)

= i
λ̄0µ̄0 − λ̄0z − µ̄0z + z2 − λ0µ0 + λ0z + µ0z − z2

λ̄0µ̄0 − λ̄0z − µ̄0z + z2 + λ0µ0 − λ0z − µ0z + z2

= i
(λ̄0µ̄0 − λ0µ0) + (λ0 − λ̄0)z − (µ0 − µ̄0)z

(λ̄0µ̄0 + λ0µ0)− (λ0 + λ̄0)z − (µ0 + µ̄0)z + 2z2

= i
−2i Im(λ0µ0) + 2i(Imλ0)z + 2i(Imµ0)z

2Re (λ0µ0)− 2(Reλ0)z − 2(Reµ0)z + 2z2

=
Im(λ0µ0)− (Im λ0 + Imµ0)z

Re (λ0µ0)− (Re λ0 +Reµ0)z + z2
=

− Im(λ0µ0) + Im(λ0 + µ0)z

−Re (λ0µ0) + Re (λ0 + µ0)z − z2
,

or

(37) VΘ(z) =
Im(λ0 + µ0)z − Im(λ0µ0)

Re (λ0 + µ0)z − Re (λ0µ0)− z2
.

Now we will take one step further and show that the impedance function of
the coupling of two L-systems whose individual impedances belong to bounded
Donoghue classes also belongs to such a class.

Theorem 5 (cf. [6], [14]). Let an L-system Θ be the coupling of two L-systems
Θ1 and Θ2 of the form (27) with the main operators T1 and T2 given by (26). Let

also VΘ1
(z) ∈ M̂κ1

and VΘ2
(z) ∈ M̂κ2

. Then the impedance function of the coupling

VΘ(z) is given by (37) belongs to the class M̂κ with

(38) κ = κ1 · κ2.

Proof. Since the membership VΘj
(z) ∈ M̂κj

, j = 1, 2 ensures that

VΘj
(i) = iaj fore some 1 < aj < 1, j = 1, 2,

with
1 + aj

1− aj
=

1

κj

, j = 1, 2,

for the transfer functions WΘj
(z) of the systems Θj, j = 1, 2 we have

WΘj
(i) =

1− iVΘj
(i)

1 + iVΘj
(i)

=
1 + aj

1− aj
=

1

κj

, j = 1, 2.

Now (38) is an immediate consequence of the multiplication Theorem 4:

κ1 · κ2 =
1

WΘ1
(i)

· 1

WΘ2
(i)

=
1

WΘ(i)
= κ.

�

Remark 6. Alternatively one can argue as follows. We have shown in Theorem

2, that the requirement that VΘ1
(z) ∈ M̂κ1

and VΘ2
(z) ∈ M̂κ2

is equivalent to
λ0 = a1i and µ0 = a2i for some 0 < a1 < 1 and 0 < a2 < 1. It has been already
shown above that VΘ(z) is given by (37) and hence

VΘ(i) =
Im(a1i+ a2i)i− Im(−a1a2)

Re (a1i+ a2i)i− Re (−a1a2) + 1
=

a1 + a2

1 + a1a2
i = ai,
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where

a =
a1 + a2

1 + a1a2
.

Applying Theorem 2 again we conclude that VΘ(z) belongs to one of the bounded
Donoghue classes. All that remains is to find the value of corresponding parameter
κ. Since 0 < a1 < 1 and 0 < a2 < 1 implies a1+a2

1+a1a2

< 1, we apply (14) to get

κ =
1− a

1 + a
=

1− a1+a2

1+a1a2

1 + a1+a2

1+a1a2

=
1 + a1a2 − a1 − a2

1 + a1a2 + a1 + a2
=

(1− a1)(1− a2)

(1 + a1)(1 + a2)
= κ1 · κ2.

Analogous results take place for VΘ1
(z) ∈ M̂

−1
κ1

and VΘ2
(z) ∈ M̂

−1
κ2

as well as

if both VΘ1
(z), VΘ2

(z) ∈ M̂.
The obtained result is useful to compare with the multiplicativity of the von

Neumann parameters obtained in [14, Theorem 5.4] when discussing the coupling
of unbounded dissipative operators.

6. c-Entropy and dissipation coefficient of an L-system

In this section we are going to evaluate the c-entropy and dissipation coefficient
of an L-system with multiplication operator.

We begin with reminding the definition of the c-entropy of an L-system intro-
duced in [4].

Definition 7. Let Θ be an L-system of the form (20). The quantity

(39) S = − ln(|WΘ(−i)|),
where WΘ(z) is the transfer function of Θ, is called the coupling entropy (or
c-entropy) of the L-system Θ.

Note that if, in addition, the point z = i belongs to ρ(T ), then we also have
that

(40) S = ln(|WΘ(i)|).
The c-entropy of an L-system of the form (20) with multiplication operator

(16) can explicitly be evaluates as follows.

Theorem 8. Let Θ be an L-system of the form (20) that is based upon multi-
plication operator (16). Then the c-entropy S of Θ is

(41) S =
1

2
ln

(Reλ0)
2 + (1 + Imλ0)

2

(Reλ0)2 + (1− Imλ0)2)
.

Proof. Our plan is to find S by the definition using (39). Utilizing (21) we
obtain

|WΘ(−i)| =
∣∣∣∣
λ̄0 + i

λ0 + i

∣∣∣∣ =
∣∣∣∣
Reλ0 + i(1− Imλ0)

Reλ0 + i(1 + Imλ0)

∣∣∣∣ =
√

(Reλ0)2 + (1 − Imλ0)2

(Reλ0)2 + (1 + Imλ0)2
.

Therefore,

(42)

S = − ln(|WΘ(−i)|) = − ln

√
(Reλ0)2 + (1− Imλ0)2

(Reλ0)2 + (1 + Imλ0)2

=
1

2
ln

(
(Reλ0)

2 + (1 + Imλ0)
2

(Reλ0)2 + (1 − Imλ0)2

)
.
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Figure 2. Maximal c-Entropy

The proof is complete. �

Remark 9. As it follows from Theorems 2, 8, and formula (41), an L-system
of the form (20) achieves its infinite c-entropy if and only λ0 = i. Recall that a
finite L-system’s c-entropy attains its maximum whenever its impedance function
VΘ(z) belongs to one of the generalized Donoghue classes [2]. That is, VΘ(i) is
purely imaginary. In the current setting, according to (23), Re (VΘ(i)) vanishes if
and only if Reλ0 = 0. Therefore, c-entropy of an L-system of the form (20) attains
its maximum (finite) value whenever λ0 = ai, for a ∈ (0, 1) ∪ (1,+∞).

The graph of c-entropy S(x, y) as a function of x = Reλ0 and y = Reλ0

is shown on Figure 2. The visible pick is actually represents the infinite value of
S(x, y) that occurs at the point (0, 1) when λ0 = i.

Let us recall the definition of the dissipation coefficient of an L-system.

Definition 10 (cf. [4], [3]). Let Θ be an L-system of the form (20) with
c-entropy S. Then the quantity

(43) D = 1− e−2S

is called the coefficient of dissipation (or dissipation coefficient) of the L-system
Θ.

Theorem 11. Let Θ be an L-system of the form (20) with multiplication op-
erator (16). Then the dissipation coefficient D of Θ is

(44) D =
4 Imλ0

(Reλ0)2 + (1 + Imλ0)2
.
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Proof. In order to simplify calculations let us denote λ0 = a+ bi. Using (43)
with the middle part of (42) we get

D = 1− e−2S = 1−
∣∣∣∣
λ̄0 + i

λ0 + i

∣∣∣∣
2

= 1− (Re λ0)
2 + (1 − Imλ0)

2

(Re λ0)2 + (1 + Imλ0)2

= 1− a2 + (1− b)2

a2 + (1 + b)2
=

a2 + (1 + b)2 − a2 − (1− b)2

a2 + (1 + b)2
=

4b

a2 + (1 + b)2
.

Thus, (44) takes place. �

Now, we turn our attention to the c-entropy of L-system coupling, as described
in Section 5. The following theorem establishes the additivity property of c-Entropy
with respect to the coupling of two L-systems, thereby justifying the use of the term
“coupling entropy.”

Theorem 12. Let an L-system Θ be the coupling of two L-systems Θ1 and Θ2

of the form (27) with the corresponding c-entropies S1 and S2. Then the c-entropy
S of Θ is such that

(45) S = S1 + S2.

If either S1 = ∞ or S2 = ∞, then S = ∞.

Proof. We rely on the Definition 7 of c-entropy and Theorem 4. Applying
(39) with (35) yields

S = − ln(|WΘ(−i)|) = − ln(|WΘ1
(−i) ·WΘ2

(−i)|)
= − ln(|WΘ1

(−i)| − ln(|WΘ2
(−i)| = S1 + S2.

�

It follows directly from Theorem 11 and formulas (41)-(42) that the c-entropy
of the coupling of two L-systems Θ1 and Θ2 of the form (27) can be written in
terms of the defining numbers λ0 and µ0 as follows.

(46)

S =
1

2
ln

(
(Reλ0)

2 + (1 + Imλ0)
2

(Reλ0)2 + (1− Imλ0)2

)
+

1

2
ln

(
(Reµ0)

2 + (1 + Imµ0)
2

(Reµ0)2 + (1 − Imµ0)2

)

=
1

2
ln

(
(Reλ0)

2 + (1 + Imλ0)
2

(Reλ0)2 + (1− Imλ0)2
· (Reµ0)

2 + (1 + Imµ0)
2

(Reµ0)2 + (1 − Imµ0)2

)
.

Now we are going to look into the dissipation coefficient of the coupling of
two L-systems of the form (27). In [3] we made a note that if L-system Θ with
c-entropy S is a coupling of two L-systems Θ1 and Θ2 with c-entropies S1 and
S2, respectively, formula (45) holds, i.e., S = S1 + S2. Let D, D1, and D2 be the
dissipation coefficients of L-systems Θ, Θ1, and Θ2. Then (43) implies

1−D = e−2S = e−2(S1+S2) = e−2S1 · e−2S2 = (1−D1)(1 −D2).

Thus, the formula

(47) D = 1− (1−D1)(1 −D2) = D1 +D2 −D1D2

describes the coefficient of dissipation of the L-system coupling. The following
theorem gives the value of the dissipation coefficient of two L-systems of the form
(27) in terms of their defining numbers λ0 and µ0.
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Theorem 13. Let an L-system Θ be the coupling of two L-systems Θ1 and Θ2

of the form (27) with the corresponding coefficients of dissipation D1 and D2. Then
the dissipation coefficient D of Θ is such that

(48) D =
4 Imλ0(|µ0|2 + 1) + 4 Imµ0(|λ0|2 + 1)

[(Reλ0)2 + (1 + Imλ0)2][(Re µ0)2 + (1 + Imµ0)2]
.

Proof. Applying formula (47) with (44) gives

D =
4 Imλ0

(Reλ0)2 + (1 + Imλ0)2
+

4 Imµ0

(Reµ0)2 + (1 + Imµ0)2

+
16 Imλ0 · Imµ0

[(Re λ0)2 + (1 + Imλ0)2][(Reµ0)2 + (1 + Imµ0)2]

=
4 Imλ0(|µ0|2 + 1) + 4 Imµ0(|λ0|2 + 1)

[(Reλ0)2 + (1 + Imλ0)2][(Reµ0)2 + (1 + Imµ0)2]
.

Thus (48) takes place. �

7. Skew-adjoint L-system with multiplication operator

Let (as above) H be a one-dimensional Hilbert space with an inner product
(·, ·) and a normalized basis vector h0 ∈ H, (‖h0‖ = 1), and T be a multiplication
operator in H of the form (16). Consider the skew-adjoint to T operator T× defined
by the formula

(49) T×h = −λ̄0h, h ∈ H.

Clearly, for all h ∈ H we have (Th, h) = −(h, T×h) and

(T×)∗h = −Th = −λ0h, ImT×h = Imλ0h, and ReT×h = −Reλ0h.

We would like to include T× into a L-system Θ× of the form (20). Let K : C → H
be of the form (17) with K∗ : H → C given by (18) exactly as described in Section
4. Then,

(50) ImT×h = Imλ0h = ImTh = KK∗h, ∀h ∈ H,

and hence T× can be included into the L-system

(51) Θ× =

(
T× K 1
H C

)
,

where operators T and K are defined by (49) and (17), respectively. The L-system
Θ× of the form (51) will be called skew-adjoint L-system with respect to an
L-system Θ of the form (20).

Repeating the steps described in Section 4, one relies on (21) to obtain

(52) WΘ×(z) = I − 2iK∗(T× − zI)−1K =
λ0 + z

λ̄0 + z
.

The corresponding impedance function is easily found and given by

(53) VΘ×(z) = K∗(ReT× − zI)−1K = − Imλ0

Reλ0 + z
.

Theorem 14. Let an L-system Θ be of the form (20) with the corresponding
skew-adjoint L-system Θ× of the form (51). Then the c-entropies S(Θ) and S(Θ×)
and dissipation coefficients D(Θ) and D(Θ×) of Θ and Θ× coincide, respectively.
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Proof. We are going to find the c-entropy S(Θ×) by the definition using (39)
and (21). We obtain

|WΘ×(−i)| =
∣∣∣∣
λ0 − i

λ̄0 − i

∣∣∣∣ =
∣∣∣∣
Reλ0 − i(1− Imλ0)

Reλ0 − i(1 + Imλ0)

∣∣∣∣ =
√

(Reλ0)2 + (1− Imλ0)2

(Reλ0)2 + (1 + Imλ0)2
.

But we have shown in the proof of Theorem 8

|WΘ(−i)| =
∣∣∣∣
λ̄0 + i

λ0 + i

∣∣∣∣ =
∣∣∣∣
Reλ0 + i(1− Imλ0)

Reλ0 + i(1 + Imλ0)

∣∣∣∣ =
√

(Reλ0)2 + (1 − Imλ0)2

(Reλ0)2 + (1 + Imλ0)2
.

Thus, |WΘ(−i)| = |WΘ×(−i)| and, applying the definition of c-entropy (39), one
obtains that the c-entropies of both L-systems Θ and Θ× match, that is S(Θ) =
S(Θ×).

The equality of the dissipation coefficients D(Θ) and D(Θ×) follows immedi-
ately from (43). �

Let us now consider the coupling of the L-systems Θ and Θ×. Hence, we are
applying Definition 3 to the L-systems of the form (20)

Θ =

(
T K 1
H C

)
and Θ× =

(
T× K 1
H C

)
,

where

(54) Th = λ0h and T×h = −λ̄0h, h ∈ H,

and where K : C → H and K∗ : H → C are such that

Kc = (
√

Imλ0 c)h0 and K∗h = (h,
√
Imλ0 h0), ∀c ∈ C.

Here h0 ∈ H is normalized basis vector in H, (‖h0‖ = 1). Let

Θ = Θ ·Θ×.

Then

Θ =

(
T K 1

H⊕H C

)

where T is of the form (30) and hence, taking into account (54),

(55)

T

[
h1

h2

]
=

(
T 2iKK∗

0 T×

)[
h1

h2

]
=

[
Th1 + 2iKK∗h2

T×h2

]

=

[
λ0h1 + 2i

√
(Imλ0)2 h2

−λ̄0h2

]
=

[
λ0h1 + (λ0 − λ̄0)h2

−λ̄0h2

]
,

for all h1, h2 ∈ H. Also, (see (32))

(56) Kc =

[
Kc

Kc

]
=

[
(
√
Imλ0 c)h0

(
√
Imλ0 c)h0

]
.

The transfer function WΘ(z) of this coupling can be found using Theorem 4 with
formulas (35) and (52)

WΘ(z) = WΘ(z) ·WΘ×(z) =
λ̄0 − z

λ0 − z
· λ0 + z

λ̄0 + z
=

|λ0|2 − (λ0 − λ̄0)z − z2

|λ0|2 + (λ0 − λ̄0)z − z2

or

(57) WΘ(z) =
|λ0|2 − 2i(Imλ0)z − z2

|λ0|2 + 2i(Imλ0)z − z2
.
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The impedance function VΘ(z) of this coupling can be found using (7). We have

VΘ(z) = i
WΘ(z)− 1

WΘ(z) + 1
= i

|λ0|
2−2i(Imλ0)z−z2

|λ0|2+2i(Im λ0)z−z2 − 1

|λ0|2−2i(Imλ0)z−z2

|λ0|2+2i(Im λ0)z−z2 + 1

= i
|λ0|2 − 2i(Imλ0)z − z2 − |λ0|2 − 2i(Imλ0)z + z2

|λ0|2 − 2i(Imλ0)z − z2 + |λ0|2 + 2i(Imλ0)z − z2
= i

−2i(Imλ0)z

|λ0|2 − z2
,

or

(58) VΘ(z) =
2(Imλ0)z

|λ0|2 − z2
.

In particular,

(59) VΘ(i) =
2(Imλ0)

|λ0|2 + 1
i,

and hence the impedance function VΘ(z) always belongs to one of the bounded
Donoghue classes discussed in Section 3. For instance, if λ0 = i, then

VΘ(z) ∈ M̂.

Remark 15. Taking into account that the impedance function VΘ(z) for the
coupling of two elementary systems Θ and Θ× is expressed as

VΘ(z) =
2(Imλ0)z

|λ0|2 − z2
=

Imλ0

|λ0| − z
+

Imλ0

(−|λ0|)− z
,

we can use Remark 1 to draw the following conclusion: the function

ZΘ(p) =
1

i
VΘ(ip)

coincide with the impedance of the parallel LC-circuit with

L =
Imλ0

|λ0|2
= Im

(
− 1

λ0

)
and C =

1

Imλ0
,

the inductance and capacitance, respectively. The discussion above sheds light on
the“internal” structure of the sequential connection of oscillatory LC-circuits men-
tioned in Remark 1: each element of such a circuit has the impedance of the coupling
of two elementary systems.

The following Corollary immediately follows from Theorems 12 and 14.

Corollary 16. Let an L-system Θ be of the form (20) with the c-entropy S
and dissipation coefficient D. Let also Θ× be the corresponding to Θ skew-adjoint
L-system of the form (51). Then the c-entropy S(Θ) of the coupling Θ = Θ ·Θ× is

(60) S(Θ) = 2S.
Moreover, the dissipation coefficient D(Θ) of this coupling is

(61) D(Θ) = 2D −D2.

Table 2 summarizes the results from Sections 4–7 that relate to c-entropy and
dissipation coefficient for the L-systems of the form (20) with λ0 = x + iy. In this
table we assume that the L-systems Θ, Θ1, Θ2 of the form (20) have c-entropies S,
S1, S2 and the dissipation coefficients D, D1, D2, respectively.
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L-system c-entropy S Dissipation Theorems

coefficient D

Θ ln
√

x2+(1+y)2

x2+(1−y)2
4y

x2+(1+y)2 Theorems 8

and 11

Θ× ln
√

x2+(1+y)2

x2+(1−y)2
4y

x2+(1+y)2 Theorem 14

Θ = Θ1 ·Θ2 S = S1 + S2 Formula (48) Theorems 12
and 13

Θ = Θ ·Θ× S(Θ) = 2S D(Θ) = 2D −D2 Corollary 16

Table 2. c-Entropy and Dissipation coefficient with λ0 = x+ iy

8. Examples

In this section we present examples that illustrate the construction of L-system
of the form (51) for different values of λ0.

Example 1. Let λ0 = i and consider the linear operator T of the form (16)
acting on an arbitrary one-dimensional Hilbert space with an inner product (·, ·)
and a normalized basis vector h0 ∈ H, (‖h0‖ = 1). Then

(62) Th = i h, h ∈ H.

Clearly,

T ∗h = (−i)h, ImTh = h, and ReTh = 0h = 0, ∀h ∈ H.

We are going to include T into an L-system Θ of the form (16). In order to do that
we take an operator K : C → H of the form

(63) Kc = c h0, ∀c ∈ C.

Then, the adjoint operator K∗ : H → C is

(64) K∗h = (h, h0), ∀h ∈ H.

Consequently, KK∗h = h. We are constructing an L-system of the form (16)

(65) Θ =

(
T K 1
H C

)
,

where operators T and K are defined by (62)–(64), respectively. Using (21) we
have

(66) WΘ(z) = I − 2iK∗(T − zI)−1K =
−i− z

i− z
=

z + i

z − i
.
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The corresponding impedance function is easily found using (22)

(67) VΘ(z) = K∗(ReT − zI)−1K = −1

z
.

Clearly, VΘ(z) ∈ M̂. Also, the c-entropy S of the L-system Θ in (65) is infinity
while the dissipation coefficient D is 1. Moreover, since i = −ī, the skew-adjoint
system Θ× in this case coincides with Θ making it “self-skew-adjoint”.

Example 2. Following the steps of Example 1 we let λ0 = 1+i and consider the
linear operator T of the form (16) acting on an arbitrary one-dimensional Hilbert
space with an inner product (·, ·) and a normalized basis vector h0 ∈ H, (‖h0‖ = 1).
Then

(68) Th = (1 + i)h, h ∈ H.

Clearly,

T ∗h = (1− i)h, ImTh = h, and ReTh = h, ∀h ∈ H.

We are going to include T into an L-system Θ of the form (16). In order to do that
we take an operator K : C → H of the form

(69) Kc = c h0, ∀c ∈ C.

Then, the adjoint operator K∗ : H → C is

(70) K∗h = (h, h0), ∀h ∈ H.

Consequently, KK∗h = h. We are constructing an L-system of the form (16)

(71) Θ =

(
T K 1
H C

)
,

where operators T and K are defined by (68)–(70), respectively. Using (21) we
have

(72) WΘ(z) = I − 2iK∗(T − zI)−1K =
1− i− z

1 + i− z
.

The corresponding impedance function is easily found using (22)

(73) VΘ(z) = K∗(ReT − zI)−1K =
1

1− z
.

The c-entropy S of the L-system Θ in (71) is found via (39) and (72) as follows

(74) S = − ln(|WΘ(−i)|) = − ln

∣∣∣∣
1

1 + 2i

∣∣∣∣ = ln(
√
5) =

1

2
ln 5.

The corresponding coefficient of dissipation D is (see (43))

(75) D = 1− e−2S = 1− e−2( 1

2
ln 5) = 1− 1

5
=

4

5
.

Note, that even though the L-systems (65) and (71) share the same value of Imλ0

and (as a result) channel operators K, the c-entropy in Example 2 is finite.
Now let us construct the skew-adjoint system Θ×. By the definition (49) we

have

(76) T×h = −(1 + i)h = (−1 + i)h, h ∈ H
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and the L-system

(77) Θ× =

(
T× K 1
H C

)
,

where K is defined by (69) is skew-adjoint to Θ. Using (52) we have

(78) WΘ×(z) = I − 2iK∗(T× − zI)−1K =
1 + i+ z

1− i+ z
.

The corresponding impedance function is easily found using (53) and is

(79) VΘ×(z) = K∗(ReT× − zI)−1K = − 1

1 + z
.

Both L-systems Θ and Θ× share c-entropy S and dissipation coefficient D values
given by (74) and (75), respectively.
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