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We consider classes of sectorial Stieltjes functions. It is shown that a function belonging to these classes can be
realized as the impedance function of a singular L-system with a sectorial state-space operator. We provide an
additional condition on a given function from this class so that the state-space operator of the realizing L-system
is α-sectorial with the exact angle of sectoriality α. Then these results are applied to L-systems based upon a
non-self-adjoint Schrödinger operator.
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1 Introduction

An operator-valued function V (z) acting on a finite-dimensional Hilbert space E belongs to the class of operator-
valued Herglotz-Nevanlinna functions if it is holomorphic on C \ R, if it is symmetric with respect to the real
axis, i.e., V (z)∗ = V (z̄), z ∈ C\R, and if it satisfies the positivity condition

Im V (z) ≥ 0, z ∈ C+ .

It is well-known (see e.g. [7], [8]) that operator-valued Herglotz-Nevanlinna functions admit the following integral
representation:

V (z) = Q + Lz +
∫

R

(
1

t − z
− t

1 + t2

)
dG(t), z ∈ C \ R, (1.1)

where Q = Q∗, L ≥ 0, and G(t) is a nondecreasing operator-valued function on R with values in the class of
nonnegative operators in E such that∫

R

(dG(t)f, f)E

1 + t2
< ∞, ∀f ∈ E.

The realization of a selected class of Herglotz-Nevanlinna functions is provided by an L-system Θ of the form{
(A − zI)x = KJϕ−,

ϕ+ = ϕ− − 2iK∗x
(1.2)

or

Θ =

(
A K J

H+ ⊂ H ⊂ H− E

)
. (1.3)
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1730 S. Belyi: Sectorial Stieltjes functions

In this system A, the state-space operator of the system, is a so-called (∗)-extension, which is a bounded linear
operator from H+ into H− extending a symmetric operator A in H, where H+ ⊂ H ⊂ H− is a rigged Hilbert
space. Moreover, K is a bounded linear operator from the finite-dimensional Hilbert space E into H−, while
J = J∗ = J−1 is acting on E, are such that Im A = KJK∗. Also, ϕ− ∈ E is an input vector, ϕ+ ∈ E is
an output vector, and x ∈ H+ is a vector of the state space of the system Θ. The system described by (1.2)–
(1.3) is called an L-system. An unbounded generalization of Brodskiı̆–Livs̆ic operator colligations [10], [16], the
L-systems have been introduced by Eduard Tsekanovskiı̆, and studied by himself, his students, and co-authors
for the last four decades. The detailed description of L-systems including historical aspects can be found in [4].
An operator-valued function

WΘ(z) = I − 2iK∗(A − zI)−1KJ

is the transfer function of the L-system Θ. It was shown in [7] that an operator-valued function V (z) acting on a
Hilbert space E of the form (1.1) can be represented and realized in the form

V (z) = i[WΘ(z) + I]−1 [WΘ(z) − I] = K∗(Re A − zI)−1K,

where WΘ(z) is a transfer function of some scattering (J = I) L-system Θ, if and only if the function V (z) in
(1.1) satisfies the following two conditions:

⎧⎪⎨
⎪⎩

L = 0,

Qf =
∫

R

t

1 + t2
dG(t)f, when

∫

R

(dG(t)f, f)E < ∞. (1.4)

The class of all realizable Herglotz-Nevanlinna functions with conditions (1.4) is denoted by N(R) (see [7]).
In the current paper we are going to focus on an important subclass of Herglotz-Nevanlinna functions, the

Stieltjes functions. A Herglotz-Nevanlinna function V (z) belongs to the Stieltjes functions subclass if it is holo-
morphic in Ext[0,+∞) and is such that Im[zV (z)]/ Im z ≥ 0, i.e., zV (z) is also a Herglotz-Nevanlinna func-
tion. The formal definition, integral representation for Stieltjes functions as well as the basic realization results
are given in Section 3. In particular, we specify a subclass of realizable Stieltjes operator-functions and show that
any member of this subclass can be realized by an L-system of the form (1.3) whose state-space operator A is
accretive.

In Section 4 we introduce the so-called sectorial classes Sα and Sα1 ,α2 of Stieltjes functions. The class Sα

was first introduced and treated by Alpay and Tsekanovskiı̆ in [2] while the description of the class Sα1 ,α2 can
only be found in [4]. The realization results presented in Section 4 for these sectorial classes allow us to observe
the properties of the realizing L-systems whose impedance functions belong to either Sα or Sα1 ,α2 .

Section 5 is devoted to L-systems of the form (1.3) containing the Schrödinger operator in L2 [a,+∞) (see
[18]) with non-self-adjoint boundary conditions

{
Thy = −y′′ + q(x)y,

y′(a) = hy(a),

(
q(x) = q(x), Im h �= 0

)
. (1.5)

A complete description of such L-systems as well as the formulas for their transfer and impedance functions are
presented. Moreover, Theorem 5.1 provides us with the formula giving the exact parametrization of all state-space
operators of L-systems based upon the Schrödinger operator (1.5).

Section 6 contains the main results of the present paper. Utilizing the general realization theorems for the
class Sα1 ,α2 covered in Section 4, we obtain some interesting properties of L-systems with Schrödinger operator
whose impedance function fall into the class Sα1 ,α2 . Most of the results are given in terms of the real parameter
μ that appears in the construction of the elements of the realizing system.

2 Preliminaries

For a pair of Hilbert spaces H1 , H2 we denote by [H1 ,H2 ] the set of all bounded linear operators from H1 to H2 .
Let Ȧ be a closed, densely defined, symmetric operator in a Hilbert space H with inner product (f, g), f, g ∈ H.
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Any operator T in H such that

Ȧ ⊂ T ⊂ Ȧ∗

is called a quasi-self-adjoint extension of Ȧ.
Consider the rigged Hilbert space (see [7]) H+ ⊂ H ⊂ H−, where H+ = Dom

(
Ȧ∗) and

(f, g)+ = (f, g) +
(
Ȧ∗f, Ȧ∗g

)
, f, g ∈ Dom(A∗).

Let R be the Riesz-Berezansky operator R (see [7]) which maps H− onto H+ such that (f, g) = (f,Rg)+ (∀f ∈
H+ , g ∈ H−) and ‖Rg‖+ = ‖g‖−. Note that identifying the space conjugate to H± with H∓, we get that if
A ∈ [H+ ,H−], then A

∗ ∈ [H+ ,H−].

Definition 2.1 An operator A ∈ [H+ ,H−] is called a self-adjoint bi-extension of a symmetric operator Ȧ if
A = A

∗ and A ⊃ Ȧ.

Let A be a self-adjoint bi-extension of Ȧ and let the operator Â in H be defined as follows:

Dom
(
Â

)
=

{
f ∈ H+ : Âf ∈ H

}
, Â = A� Dom

(
Â

)
.

The operator Â is called a quasi-kernel of a self-adjoint bi-extension A (see [21]).

Definition 2.2 Let T be a quasi-self-adjoint extension of Ȧ with nonempty resolvent set ρ(T ). An operator
A ∈ [H+ ,H−] is called a (∗)-extension of an operator T if

(1) A ⊃ T ⊃ Ȧ, A
∗ ⊃ T ∗ ⊃ Ȧ,

(2) the quasi-kernel of self-adjoint bi-extension Re A = 1
2 (A + A

∗) is a self-adjoint extension of Ȧ.

A definition of (∗)-extension in an equivalent form was first introduced by Eduard Tsekanovskiı̆ in [17]. The
existence, description, and analog of von Neumann’s formulas for self-adjoint bi-extensions and (∗)-extensions
were discussed in [21] (see also [3]–[5], [7]). In what follows we suppose that Ȧ has equal deficiency indices
and will say that a quasi-self-adjoint extension T of Ȧ belongs to the class Λ

(
Ȧ

)
if ρ(T ) �= ∅, Dom

(
Ȧ

)
=

Dom(T ) ∩ Dom(T ∗), and T admits (∗)-extensions.
Recall that a linear operator T in a Hilbert space H is called accretive [15] if Re (Tf, f) ≥ 0 for all f ∈

Dom(T ). We call an accretive operator T α-sectorial [15] if there exists a value of α ∈ (0, π/2) such that

| Im(Tf, f)| ≤ (tan α) Re (Tf, f), f ∈ Dom(T ).

We say that the angle of sectoriality α is exact for an α-sectorial operator T if

tan α = sup
f∈Dom(T )

| Im(Tf, f)|
Re (Tf, f)

.

Let T be a quasi-self-adjoint maximal accretive extension of a nonnegative operator Ȧ. A (∗)-extension A of
T is called accretive if Re (Af, f) ≥ 0 for all f ∈ H+ . This is equivalent to that the real part Re A = (A+A

∗)/2
is nonnegative self-adjoint bi-extension of Ȧ.

Definition 2.3 A system of equations
{

(A − zI)x = KJϕ−,

ϕ+ = ϕ− − 2iK∗x,

or an array

Θ =
(

A K J
H+ ⊂ H ⊂ H− E

)
(2.1)
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1732 S. Belyi: Sectorial Stieltjes functions

is called an L-system if:

(1) A is a (∗)-extension of an operator T of the class Λ
(
Ȧ

)
;

(2) J = J∗ = J−1 ∈ [E,E], dim E < ∞;

(3) Im A = KJK∗, where K ∈ [E,H−], K∗ ∈ [H+ , E], and Ran(K) = Ran(Im A).

In the definition above ϕ− ∈ E stands for an input vector, ϕ+ ∈ E is an output vector, and x is a state space
vector in H. An operator A is called a state-space operator of the system Θ, J is a direction operator, and K is
a channel operator. A system Θ of the form (2.1) is called an accretive system [9], [12] if its main operator A is
accretive.

We associate with an L-system Θ the operator-valued function

WΘ(z) = I − 2iK∗(A − zI)−1KJ, z ∈ ρ(T ), (2.2)

which is called the transfer function of the L-system Θ. We also consider the operator-valued function

VΘ(z) = K∗(Re A − zI)−1K. (2.3)

It was shown in [7], [4] that both (2.2) and (2.3) are well defined. The transfer operator-function WΘ(z) of the
system Θ and an operator-function VΘ(z) of the form (2.3) are connected by the following relations valid for
Im z �= 0, z ∈ ρ(T ),

VΘ(z) = i[WΘ(z) + I]−1 [WΘ(z) − I]J,

WΘ(z) = (I + iVΘ(z)J)−1(I − iVΘ(z)J).

The function VΘ(z) defined by (2.3) is called the impedance function of an L-system Θ of the form (2.1). It was
shown in [7] that the class N(R) of all Herglotz-Nevanlinna functions in a finite-dimensional Hilbert space E,
that can be realized as impedance functions of an L-system, is described by conditions (1.4). In particular, the
following theorem [4], [7] takes place.

Theorem 2.4 Let Θ be an L-system of the form (2.1). Then the impedance function VΘ(z) of the form (2.3)
belongs to the class N(R).

Conversely, let an operator-valued function V (z) belong to the class N(R). Then V (z) can be realized as
the impedance function of an L-system Θ of the form (2.1) with a preassigned direction operator J for which
I + iV (−i)J is invertible.

It was shown in [7] that if J = I , then the invertibility condition in the second part of Theorem 2.4 is satisfied
automatically.

3 Realization of Stieltjes functions

Let E be a finite-dimensional Hilbert space. The scalar versions of the following definition can be found in [14].

Definition 3.1 We will call an operator-valued Herglotz-Nevanlinna function V (z) ∈ [E,E] a Stieltjes func-
tion if V (z) admits the following integral representation

V (z) = γ +

∞∫

0

dG(t)
t − z

, (3.1)

where γ ≥ 0 and G(t) is a non-decreasing on [0,+∞) operator-valued function such that
∞∫

0

(dG(t)f, f)E

1 + t
< ∞, ∀f ∈ E.

Alternatively (see [14]) an operator-valued function V (z) is Stieltjes if it is holomorphic in Ext[0,+∞) and

Im[zV (z)]
Im z

≥ 0. (3.2)

Theorem 3.2 below was stated in equivalent ways and proved in [4], [11], [12].
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Theorem 3.2 Let Θ be an L-system of the form (2.1). Then the impedance operator-valued function VΘ(z)
defined by (2.3) is a Stieltjes function if and only if the main operator A of the system Θ is accretive.

At this point we need to note that since Stieltjes functions form a subset of Herglotz-Nevanlinna functions
then we can utilize the conditions (1.4) to form a class S(R) of all realizable Stieltjes functions presented in [4],
[12]. Clearly, S(R) is a subclass of N(R) of all realizable Herglotz-Nevanlinna functions described in details in
[7] and [8]. To see the specifications of the class S(R) we recall that aside of integral representation (3.1), any
Stieltjes function admits a representation (1.1). Applying condition (1.4) we obtain

Q =
1
2
[
VΘ(−i) + V ∗

Θ(−i)
]

= γ +

+∞∫

0

t

1 + t2
dG(t). (3.3)

Combining the second part of condition (1.4) and (3.3) we conclude that

γf = 0, (3.4)

for all f ∈ E such that
∞∫

0

(dG(t)f, f)E < ∞ (3.5)

holds. Consequently, (3.4)–(3.5) is precisely the condition for V (z) ∈ S(R).
We are going to focus though on the subclass S0(R) of S(R) (see [4], [12]), whose definition is the following.

Definition 3.3 An operator-valued Stieltjes function V (z) ∈ [E,E] is said to be a member of the class S0(R)
if in the representation (3.1) we have

∞∫

0

(dG(t)f, f)E = ∞

for all non-zero f ∈ E.

We note that a function V (z) can belong to the class S0(R) and have an arbitrary constant γ ≥ 0 in the
representation (3.1).

The following statement [12] is the direct realization theorem for the functions of the class S0(R).
Theorem 3.4 Let Θ be an accretive system of the form (2.1). Then the impedance operator-function VΘ(z) of

the form (2.3) belongs to the class S0(R).
The inverse realization theorem can be stated and proved (see [12]) for the classes S0(R) as follows.

Theorem 3.5 Let an operator-valued function V (z) belong to the class S0(R). Then V (z) admits a realization
by an accretive system Θ of the form (2.1) with J = I .

4 Sectorial classes S α and S α1 ,α2 and their realizations

Let α ∈
(
0, π

2

)
. We introduce sectorial subclasses Sα of operator-valued Stieltjes functions as follows. An

operator-valued Stieltjes function V (z) belongs to Sα if

Kα =
n∑

k,l=1

([
zkV (zk ) − z̄lV (z̄l)

zk − z̄l
− (cot α) V ∗(zl)V (zk )

]
hk , hl

)
E

≥ 0, (4.1)

for an arbitrary sequence {zk} (k = 1, . . . , n) of (Im zk > 0) complex numbers and a sequence of vectors {hk}
in E. For 0 < α1 < α2 < π

2 , we have

Sα1 ⊂ Sα2 ⊂ S,

where S denotes the class of all Stieltjes functions
(
which corresponds to the case α = π

2

)
, as follows from the

inequality

Kα1 ≤ Kα2 ≤ Kπ
2
.

The following theorem [2], [4] refines the result of Theorem 3.2 as applied to the class Sα .
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1734 S. Belyi: Sectorial Stieltjes functions

Theorem 4.1 Let Θ be a scattering L-system of the form (2.1) with a densely defined non-negative symmetric
operator Ȧ. Then the impedance function VΘ(z) defined by (2.3) belongs to the class Sα if and only if the operator
A of the L-system Θ is α-sectorial.

Another class that we would like to introduce at this point is a special subclass of scalar Stieltjes functions.
Let

0 ≤ α1 ≤ α2 ≤ π

2
.

We say that a scalar Stieltjes function V (z) belongs to the class S α1 ,α2 if

tan α1 = lim
x→−∞

V (x), tan α2 = lim
x→−0

V (x). (4.2)

The following theorem [4] provides a connection between the classes S α and S α1 ,α2 .

Theorem 4.2 Let Θ be a scattering L-system of the form

Θ =

(
A K 1

H+ ⊂ H ⊂ H− C

)
, (4.3)

with a densely defined non-negative symmetric operator Ȧ. Let also A be an α-sectorial (∗)-extension of T ∈
Λ

(
Ȧ

)
. Then the impedance function VΘ(z) defined by (2.3) belongs to the class Sα1 ,α2 , tan α2 ≤ tan α, and T

is (α2 − α1)-sectorial with the exact angle of sectoriality (α2 − α1).
The corollary below treats the case when α in Theorem 4.2 is the exact angle of sectoriality of the operator T .

Thus both operators T and A maintain the same exact angle.

Corollary 4.3 Let Θ of the form (4.3) be an L-system as in the statement of Theorem 4.2 and let α be the exact
angle of sectoriality of the operator T of the system Θ. Then VΘ(z) ∈ S0,α .

P r o o f. According to Theorem 4.2 the exact angle of sectoriality is given by α2 − α1 , where

tan α1 = lim
x→−∞

VΘ(x), tan α2 = lim
x→−0

VΘ(x).

It was also shown that tan α ≥ tan α2 . On the other hand, since in the statement of the current corollary α be the
exact angle of sectoriality of T , then α = α2 − α1 and hence tan(α2 − α1) ≥ tan α2 . Therefore, α1 = 0.

Remark 4.4 It follows that under assumptions of Corollary 4.3, the impedance function VΘ(z) has the form

VΘ(z) =

∞∫

0

dG(t)
t − z

.

For the remainder of this paper we will need to rely on the following theorem whose proof can be found in [4].

Theorem 4.5 Let Θ be an L-system of the form (4.3), where A is a (∗)-extension of T ∈ Λ
(
Ȧ

)
and Ȧ is a

closed densely defined non-negative symmetric operator with deficiency numbers (1, 1). If the impedance function
VΘ(z) belongs to the class Sα1 ,α2 , then A is α-sectorial, where

tan α = tan α2 + 2
√

tan α1(tan α2 − tan α1).

The next statement gives an explicit description of all the functions from the class S α1 ,α2 that are realizable
as impedance functions of such L-systems that the exact angles of sectoriality of T and A coincide. Its proof
immediately follows from Theorems 4.2 and 4.5.

Theorem 4.6 Let Θ be an L-system of the form (4.3) with a densely defined non-negative symmetric operator
Ȧ. Then A is α-sectorial (∗)-extension of an α-sectorial operator T ∈ Λ

(
Ȧ

)
with the exact angle α ∈ (0, π/2)

if and only if

VΘ(z) =

∞∫

0

dG(t)
t − z

∈ S0,α .
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Moreover, the angle α can be found via the formula

tan α =

∞∫

0

dG(t)
t

. (4.4)

5 L-systems with a Schrödinger operator

Let H = L2 [a,+∞) and l(y) = −y′′ + q(x)y, where q is a real locally summable function. Suppose that the
symmetric operator

{
Ȧy = −y′′ + q(x)y,

y(a) = y′(a) = 0
(5.1)

has deficiency indices (1,1). Let D∗ be the set of functions locally absolutely continuous together with their first
derivatives such that l(y) ∈ L2 [a,+∞). Consider H+ = Dom

(
Ȧ∗) = D∗ with the scalar product

(y, z)+ =

∞∫

a

(
y(x)z(x) + l(y)l(z)

)
dx, y, z ∈ D∗.

Let

H+ ⊂ L2 [a,+∞) ⊂ H−

be the corresponding triplet of Hilbert spaces. Consider the operators

{
Thy = l(y) = −y′′ + q(x)y,

hy(a) − y′(a) = 0,

{
T ∗

h y = l(y) = −y′′ + q(x)y,

hy(a) − y′(a) = 0.
(5.2)

The following theorem was proved in [4], [6].

Theorem 5.1 The set of all (∗)-extensions of a non-self-adjoint Schrödinger operator Th of the form (5.2) in
L2 [a,+∞) can be represented in the form

Ay = −y′′ + q(x)y − 1
μ − h

[y′(a) − hy(a)] [μδ(x − a) + δ′(x − a)],

A
∗y = −y′′ + q(x)y − 1

μ − h
[y′(a) − hy(a)] [μδ(x − a) + δ′(x − a)].

(5.3)

Moreover, the formulas (5.3) establish a one-to-one correspondence between the set of all (∗)-extensions of a
Schrödinger operator Th of the form (5.2) and all real numbers μ ∈ [−∞,+∞].

Let Ȧ be a symmetric operator of the form (5.1) with deficiency indices (1,1), generated by the differential
operation l(y) = −y′′ + q(x)y. Let also ϕk (x, λ) (k = 1, 2) be the solutions of the following Cauchy problems:

⎧⎪⎨
⎪⎩

l(ϕ1) = λϕ1 ,

ϕ1(a, λ) = 0,
ϕ′

1(a, λ) = 1,

⎧⎪⎨
⎪⎩

l(ϕ2) = λϕ2 ,

ϕ2(a, λ) = −1,

ϕ′
2(a, λ) = 0,

It is well-known [1] that there exists a function m∞(λ) (called the Weyl-Titchmarsh function) for which

ϕ(x, λ) = ϕ2(x, λ) + m∞(λ)ϕ1(x, λ)

belongs to L2 [a,+∞).
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1736 S. Belyi: Sectorial Stieltjes functions

Suppose that the symmetric operator Ȧ of the form (5.1) with deficiency indices (1,1) is nonnegative, i.e.,(
Ȧf, f

)
≥ 0 for all f ∈ Dom

(
Ȧ

)
. It was shown in [19], [20] that the Schrödinger operator Th of the form (5.2)

is accretive if and only if

Re h ≥ −m∞(−0). (5.4)

The following theorem will be needed in the next section. Its proof can be located in [4].

Theorem 5.2 Let Th (Im h > 0) be an accretive Schrödinger operator of the form (5.2). Then for all real μ
satisfying the following inequality

μ ≥ (Im h)2

m∞(−0) + Re h
+ Re h,

the operators A in (5.3) define the set of all accretive (∗)-extensions A of the operator Th . The operator Th has a
unique accretive (∗)-extension A if and only if

Re h = −m∞(−0).

In this case this unique (∗)-extension has the form

Ay = −y′′ + q(x)y + [hy(a) − y′(a)] δ(x − a),

A
∗y = −y′′ + q(x)y + [hy(a) − y′(a)] δ(x − a).

(5.5)

Now we shall construct an L-system based on a non-self-adjoint Schrödinger operator. One can easily check
that the (∗)-extension

Ay = −y′′ + q(x)y − 1
μ − h

[y′(a) − hy(a)] [μδ(x − a) + δ′(x − a)], Im h > 0,

of the non-self-adjoint Schrödinger operator Th of the form (5.2) satisfies the condition

Im A =
A − A

∗

2i
= (., g)g,

where

g =
(Im h)

1
2

|μ − h| [μδ(x − a) + δ′(x − a)]

and δ(x − a), δ′(x − a) are the delta-function and its derivative at the point a, respectively. Moreover,

(y, g) =
(Im h)

1
2

|μ − h| [μy(a) − y′(a)],

where y ∈ H+ , g ∈ H−, H+ ⊂ L2(a,+∞) ⊂ H− and the triplet of Hilbert spaces is as discussed in
Theorem 5.1. Let E = C, Kc = cg (c ∈ C). It is clear that

K∗y = (y, g), y ∈ H+ , (5.6)

and Im A = KK∗. Therefore, the array

Θ =
(

A K 1
H+ ⊂ L2 [a,+∞) ⊂ H− C

)
, (5.7)

is an L-system with the main operator A of the form (5.3), the direction operator J = 1, and the channel operator
K of the form (5.6). Our next logical step is finding the transfer function of (5.7). It was shown in [4], [6] that

WΘ(λ) =
μ − h

μ − h

m∞(λ) + h

m∞(λ) + h
,
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and

VΘ(λ) =
(m∞(λ) + μ) Im h

(μ − Re h) m∞(λ) + μRe h − |h|2 . (5.8)

The following theorem can be found in [4].

Theorem 5.3 Let Θ be an L-system of the form (5.7), where A is a (∗)-extension of the form (5.3) of the
accretive Schrödinger operator Th of the form (5.2). Then its impedance function VΘ(z) is a Stieltjes function if
and only if

Re h ≥ −m∞(−0) and μ ≥ (Im h)2

m∞(−0) + Re h
+ Re h. (5.9)

6 Sectorial Schrödinger L-systems

Let Θ be an L-system of the form (5.7), where A is a (∗)-extension (5.3) of the accretive Schrödinger operator
Th . The following theorem [4] takes place.

Theorem 6.1 If an accretive Schrödinger operator Th , (Im h > 0) is α-sectorial, then

tan α =
Im h

Re h + m∞(−0)
. (6.1)

Conversely, if h, (Im h > 0) is such that Re h > −m∞(−0), then operator Th of the form (5.2) is α-sectorial
and α is determined by (6.1). Moreover, Th is accretive but not α-sectorial for any α ∈ (0, π/2) if and only if
Re h = −m∞(−0).

It follows from Theorems 3.2 and 5.3 (see also [4]) that the operator A of Θ is accretive if and only if (5.9)
holds. Using (5.8) we can write the impedance function VΘ(z) in the form

VΘ(z) =
(m∞(z) + μ) Im h

(μ − Re h) (m∞(z) + Re h) − (Im h)2 . (6.2)

Consider our system Θ with μ = +∞. Then in (6.2) we obtain

VΘ(z) =
Im h

m∞(z) + h
.

Thus, in this case

lim
x→−∞

VΘ(x) = lim
x→−∞

Im h

m∞(x) + h
= 0, (6.3)

since m∞(x) → +∞ as x → −∞. Moreover,

lim
x→−0

VΘ(x) =
Im h

m∞(−0) + h
.

Assuming that Th is α-sectorial and hence Re h > −m∞(−0), we use (4.2) and obtain

lim
x→−∞

VΘ(x) = 0 = tan 0 = tanα1 , lim
x→−0

VΘ(x) =
Im h

m∞(−0) + h
= tanα2 .

On the other hand since Th is α-sectorial, then via Theorem 6.1 we have that

tan α = tanα2 =
Im h

m∞(−0) + h
,

and hence, by Corollary 4.3, VΘ(z) belongs to the class S0,α .
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Let now μ �= +∞ and satisfy the second inequality (5.9). Then

lim
x→−∞

VΘ(x) = lim
x→−∞

(m∞(x) + μ) Im h

(μ − Re h) (m∞(x) + Re h) − (Im h)2 =
Im h

μ − Re h
= tan α1 , (6.4)

and

lim
x→−0

VΘ(x) =
(m∞(−0) + μ) Imh

(μ − Re h) (m∞(−0) + Re h) − (Im h)2 = tan α2 . (6.5)

Therefore, in this case VΘ(z) ∈ Sα1 ,α2 .

Theorem 6.2 Let Θ be an L-system of the form (5.7), where A is a (∗)-extension of an α-sectorial operator
Th with the exact angle of sectoriality α ∈ (0, π/2). Then A is an α-sectorial (∗)-extension of Th (with the same
angle of sectoriality) if and only if μ = +∞ in (5.3).

P r o o f. It follows from (6.3)–(6.5) that in this case VΘ(z) ∈ S0,α if and only if μ = +∞. Thus using
Corollary 4.3 for the function VΘ(z) we obtain that A is α-sectorial (∗)-extension of Th .

We note that if Th is α-sectorial with the exact angle of sectoriality α, then it admits only one α-sectorial
(∗)-extension A with the same angle of sectoriality α. Consequently, μ = +∞ and A has the form (5.5).

Theorem 6.3 Let Θ be an L-system of the form (5.7), where A is a (∗)-extension of an α-sectorial operator
Th with the exact angle of sectoriality α ∈ (0, π/2). Then A is accretive but not α-sectorial for any α ∈ (0, π/2)
(∗)-extension of Th if and only if in (5.3)

μ = μ0 =
(Im h)2

m∞(−0) + Re h
+ Re h. (6.6)

P r o o f. Let VΘ(z) be the impedance function of our system Θ. If in (6.4) we set μ = μ0 where μ0 is given
by (6.6), then

lim
x→−∞

VΘ(x) =
Im h

μ0 − Re h
=

m∞(−0) + Re h

Im h
=

1
tan α

= tan
(π

2
− α

)
= tan α1 , (6.7)

where α1 = π
2 − α. On the other hand, using (6.5) with μ = μ0 we obtain

lim
x→−0

VΘ(x) =
Im h

(
m∞(−0) + (Im h)2

m∞(−0)+Re h

)
(Im h)2

m∞(−0)+Re h (m∞(−0) + Re h) − (Im h)2
= ∞ = tan

π

2
= tanα2 . (6.8)

Hence, (6.7) and (6.8) yield VΘ(z) ∈ S
π
2 −α, π

2 . Now, if we assume the α-sectoriality of A, then then by
Theorem 4.2

tan α > tan α2 = ∞.

Therefore, A is accretive but not α-sectorial for any α ∈ (0, π/2).
Conversely, suppose, that A is an α-sectorial (∗)-extension for some α ∈ (0, π/2). Then, according to

Theorem 4.5, A is also β-sectorial and

tan β = tanα2 + 2
√

tan α1(tan α2 − tan α1) < ∞.

Hence, tan α2 �= ∞ and it follows from (6.8) that μ �= μ0 . The theorem is proved.

Note that it follows from the above theorem that any α-sectorial operator Th with the exact angle of sectoriality
α ∈ (0, π/2) admits only one accretive (∗)-extension A. This extension takes the form (5.3) with μ = μ0 where
μ0 is given by (6.6).
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Fig. 1 Function f (μ).
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Fig. 2 Angle of sectoriality β.

Theorem 6.4 Let Θ be an accretive L-system of the form (5.7), where A is a (∗)-extension of a θ-sectorial
operator Th . Let also μ∗ ∈ (μ0 ,+∞) be a fixed value that parameterizes A via (5.3), μ0 be defined by (6.6), and
VΘ(z) ∈ Sα1 ,α2 . Then a (∗)-extension Aμ of Th is β-sectorial for any μ ∈ [μ∗,+∞) with

tan β = tan α1 + 2
√

tan α1 tan α2 . (6.9)

P r o o f. According to Theorems 4.2 and 4.5, a ϕ-sectorial operator A of an L-system of the form (5.7) with
the impedance function of the class Sα1 ,α2 is also α-sectorial with

tan α = tanα2 + 2
√

tan α1(tan α2 − tan α1).

But then, clearly

tan α < tan β = tanα1 + 2
√

tan α1 tan α2 , (6.10)

and hence this A is also β-sectorial.
Now suppose μ ∈ (μ0 ,+∞). Then it follows from Theorem 6.3 that the operator A in L-system Θ of the

form (5.7) is ϕ-sectorial (with some angle ϕ) for any such μ in parametrization (5.3). Using (6.4) and (6.5) on
the impedance function VΘ(z) of this L-system we can define a function

f(μ) = tan α1 + 2
√

tan α1 tan α2

=
(m∞(x) + μ) Im h

(μ − Re h) (m∞(x) + Re h) − (Im h)2 (6.11)

+ 2

√
Im h

μ − Re h
· (m∞(x) + μ) Im h

(μ − Re h) (m∞(x) + Re h) − (Im h)2 .

By direct check one confirms that f(μ) is a decreasing function defined on (μ0 ,+∞) with the range [tan θ,+∞),
where θ is the angle of sectoriality of the operator Th and tan θ is given by (6.1). The graph of this functions is
schematically given on the Figure 1.

Next we take the (∗)-extension A that is parameterized via (5.3) by the fixed value μ∗ ∈ (μ0 ,+∞) from the
premise of our theorem. According to our derivations above this A is β-sectorial with β given by (6.9). But then
for every μ ∈ (μ∗,+∞) the values of f(μ) are going to be smaller than tan β (see Figure 2). Consequently, for
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a (∗)-extension Aμ that is parameterized by the value of μ ∈ [μ∗,+∞) the following obvious inequalities take
place

| Im(Aμf, f)| ≤ f(μ) Re (Aμf, f) ≤ (tan β) Re (Aμf, f), f ∈ H+ .

Hence, any (∗)-extension Aμ parameterized by a μ ∈ [μ∗,+∞) is β-sectorial.

Note that Theorem 6.4 provides us with a value β which serves as a universal angle of sectoriality for the entire
family of (∗)-extensions A of the form (5.3). The next theorem provides us with the existence of a real number
μ∗ described in Theorem 6.4.

Theorem 6.5 Let Θ be an L-system of the form (5.7), where A is an α-sectorial (∗)-extension of a θ-sectorial
operator Th and VΘ(z) ∈ Sα1 ,α2 . Then there exists a real number μ∗ that can be derived from equation (6.9)
such that any (∗)-extension A parameterized by a μ ∈ [μ∗,+∞) is a β-sectorial (∗)-extension of Th .

The proof directly follows from Theorem 6.4.
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