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We consider classes of sectorial Stieltjes functions. It is shown that a function belonging to these classes can be
realized as the impedance function of a singular L-system with a sectorial state-space operator. We provide an
additional condition on a given function from this class so that the state-space operator of the realizing L-system
is a-sectorial with the exact angle of sectoriality «e. Then these results are applied to L-systems based upon a
non-self-adjoint Schrodinger operator.
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1 Introduction

An operator-valued function V' (z) acting on a finite-dimensional Hilbert space E belongs to the class of operator-
valued Herglotz-Nevanlinna functions if it is holomorphic on C \ R, if it is symmetric with respect to the real
axis, i.e., V(z)* = V(z), z € C\R, and if it satisfies the positivity condition

ImV(z) >0, ze€C,.

It is well-known (see e.g. [7], [8]) that operator-valued Herglotz-Nevanlinna functions admit the following integral
representation:

1 t

Ve -Q+Le+ [ (- g Jae, zecir (1.0
R

where @ = Q*, L > 0, and G(¢) is a nondecreasing operator-valued function on R with values in the class of
nonnegative operators in E such that

dG(t)f,
JECCI E——
R

The realization of a selected class of Herglotz-Nevanlinna functions is provided by an L-system © of the form

{(A —zDz=KJp_,

1.2
pr =p_ —2K*x (12)

or

A K J
0= . (1.3)
<H+ CHCH- E)
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1730 S. Belyi: Sectorial Stieltjes functions

In this system A, the state-space operator of the system, is a so-called (x)-extension, which is a bounded linear
operator from M into H_ extending a symmetric operator A in H, where H, C H C H_ is a rigged Hilbert
space. Moreover, K is a bounded linear operator from the finite-dimensional Hilbert space E into H_, while
J = J* = J!is acting on E, are such that ImA = KJK*. Also, ¢_ € E is an input vector, o, € F is
an output vector, and x € H, is a vector of the state space of the system O. The system described by (1.2)-
(1.3) is called an L-system. An unbounded generalization of Brodskii-Liv§ic operator colligations [10], [16], the
L-systems have been introduced by Eduard Tsekanovskii, and studied by himself, his students, and co-authors
for the last four decades. The detailed description of L-systems including historical aspects can be found in [4].
An operator-valued function

We(z) =1—2K*(A—2I)"'KJ

is the transfer function of the L-system ©. It was shown in [7] that an operator-valued function V'(z) acting on a
Hilbert space E of the form (1.1) can be represented and realized in the form

V(z) =i[We(2) + 1] ' [We(2) — I] = K*(ReA — 2I) 'K,

where Wy (2) is a transfer function of some scattering (J = I) L-system O, if and only if the function V' (z) in
(1.1) satisfies the following two conditions:

L=0,

Qf = / H—;t? dG(t)f, when / (GO f, f)p < . (14)
R R
The class of all realizable Herglotz-Nevanlinna functions with conditions (1.4) is denoted by N (R) (see [7]).

In the current paper we are going to focus on an important subclass of Herglotz-Nevanlinna functions, the
Stieltjes functions. A Herglotz-Nevanlinna function V' (z) belongs to the Stieltjes functions subclass if it is holo-
morphic in Ext[0, +00) and is such that Im[zV (2)]/Im z > 0, i.e., 2V (2) is also a Herglotz-Nevanlinna func-
tion. The formal definition, integral representation for Stieltjes functions as well as the basic realization results
are given in Section 3. In particular, we specify a subclass of realizable Stieltjes operator-functions and show that
any member of this subclass can be realized by an L-system of the form (1.3) whose state-space operator A is
accretive.

In Section 4 we introduce the so-called sectorial classes S“ and S*'*2 of Stieltjes functions. The class S
was first introduced and treated by Alpay and Tsekanovskif in [2] while the description of the class S“'“2 can
only be found in [4]. The realization results presented in Section 4 for these sectorial classes allow us to observe
the properties of the realizing L-systems whose impedance functions belong to either S or S“1-*2.

Section 5 is devoted to L-systems of the form (1.3) containing the Schrodinger operator in Ly[a, +00) (see
[18]) with non-self-adjoint boundary conditions

Ty = —y" +q(x)y, S m
{y/(a) — hy(a), (4(2) = g(=), Im b £ 0). (1.5)

A complete description of such L-systems as well as the formulas for their transfer and impedance functions are
presented. Moreover, Theorem 5.1 provides us with the formula giving the exact parametrization of all state-space
operators of L-systems based upon the Schrodinger operator (1.5).

Section 6 contains the main results of the present paper. Utilizing the general realization theorems for the
class 5“2 covered in Section 4, we obtain some interesting properties of L-systems with Schrédinger operator
whose impedance function fall into the class S“'**2. Most of the results are given in terms of the real parameter
w that appears in the construction of the elements of the realizing system.

2 Preliminaries

For a pair of Hilbert spaces H1, Ha we denote by [H;, Hz] the set of all bounded linear operators from H; to Hs.
Let A be a closed, densely defined, symmetric operator in a Hilbert space H with inner product (f, g), f,g € H.
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Any operator 7" in ‘H such that
AcTc A

is called a quasi-self-adjoint extension of A. )
Consider the rigged Hilbert space (see [7]) Hy C H C H_, where H, = Dom(A*) and

(f.9)+ = (f,9)+ (A" f,A%g), f,g € Dom(A*).

Let R be the Riesz-Berezansky operator R (see [7]) which maps H_ onto . such that (£, g) = (f,Rg)+ (Vf €
Hi,g € H_) and |[Rg|l+ = |lg]|—. Note that identifying the space conjugate to H1 with H, we get that if
A€ [Hy, H_], then A* € [Hy, H_].

Definition 2.1 An operator A € [H,,H_] is called a self-adjoint bi-extension of a symmetric operator A if
A =A*and A D A.

Let A be a self-adjoint bi-extension of A and let the operator A in H be defined as follows:

Dom(ﬁ) = {f € Hy :A\f € H}, A\:A[Dom(g).

The operator A'is called a quasi-kernel of a self-adjoint bi-extension A (see [21]).

Definition 2.2 Let T be a quasi-self-adjoint extension of A with nonempty resolvent set p(T). An operator
A € [H.,H_] is called a (x)-extension of an operator T if

(1) ADT>A, A*>T*>D A,

(2) the quasi-kernel of self-adjoint bi-extension Re A = %(A + A*) is a self-adjoint extension of A.

A definition of (x)-extension in an equivalent form was first introduced by Eduard Tsekanovskii in [17]. The
existence, description, and analog of von Neumann’s formulas for self-adjoint bi-extensions and (x)-extensions
were discussed in [21] (see also [3]-[5], [7]). In what follows we suppose that A has equal deficiency inglices
and will say that a quasi-self-adjoint extension 7" of A belongs to the class A(A) if p(T) # 0, Dorn(A) =
Dom(T") N Dom(T™*), and T admits (x)-extensions.

Recall that a linear operator 7" in a Hilbert space ) is called accretive [15] if Re (T'f, f) > 0 for all f €
Dom(T'). We call an accretive operator T' «-sectorial [15] if there exists a value of « € (0, 7/2) such that

| Im(T'f, f)| < (tana)Re (T'f, f), [f € Dom(T).
We say that the angle of sectoriality « is exact for an a-sectorial operator 7' if

tana = sup W
f€Dom(T) Re (Tf, f) .

Let 7" be a quasi-self-adjoint maximal accretive extension of a nonnegative operator A A (*)-extension A of
T is called accretive if Re (A f, f) > 0 for all f € H_ . This is equivalent to that the real part Re A = (A +A*)/2
is nonnegative self-adjoint bi-extension of A.

Definition 2.3 A system of equations

(A—zDNzx=KJyp_,
pr =p_ — 2K x,

Oor an array
A K J
0= (m CHCH. E) @D
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1732 S. Belyi: Sectorial Stieltjes functions

is called an L-system: if:

(1) Ais a (+)-extension of an operator T of the class A (A);
2 J=J*=J'€[EE], dimE < oo;
(3) ImA = KJK*, where K € [E,H_], K* € [H,, E], and Ran(K) = Ran(Im A).
In the definition above ¢_ € F stands for an input vector, ¢, € FE is an output vector, and x is a state space
vector in H. An operator A is called a state-space operator of the system ©, J is a direction operator, and K is
a channel operator. A system O of the form (2.1) is called an accretive system [9], [12] if its main operator A is

accretive.
We associate with an L-system © the operator-valued function

Wo(z) =1—2K*(A—2I)"'KJ, =z¢p(T), (2.2)
which is called the transfer function of the L-system ©. We also consider the operator-valued function
Vo(z) = K*(ReA — 21) ' K. (2.3)

It was shown in [7], [4] that both (2.2) and (2.3) are well defined. The transfer operator-function We (z) of the
system © and an operator-function Vg (2) of the form (2.3) are connected by the following relations valid for
Imz # 0,z € p(T),

Vo (2) = i[We(z) + 117! [We (2) — 1)J,
Wo(2) = (I +iVe (2)J) " (I —iVe(2)]).

The function Vg (2) defined by (2.3) is called the impedance function of an L-system © of the form (2.1). It was
shown in [7] that the class N (R) of all Herglotz-Nevanlinna functions in a finite-dimensional Hilbert space E,
that can be realized as impedance functions of an L-system, is described by conditions (1.4). In particular, the
following theorem [4], [7] takes place.

Theorem 2.4 Let © be an L-system of the form (2.1). Then the impedance function Vg (2) of the form (2.3)
belongs to the class N(R).

Conversely, let an operator-valued function V (z) belong to the class N(R). Then V (z) can be realized as
the impedance function of an L-system © of the form (2.1) with a preassigned direction operator J for which
I + iV (—=i)J is invertible.

It was shown in [7] that if J = I, then the invertibility condition in the second part of Theorem 2.4 is satisfied
automatically.

3 Realization of Stieltjes functions

Let F be a finite-dimensional Hilbert space. The scalar versions of the following definition can be found in [14].

Definition 3.1 We will call an operator-valued Herglotz-Nevanlinna function V' (z) € [E, E] a Stieltjes func-
tion if V (z) admits the following integral representation

T dG(1)
V(z) = 3.1
@)=+ [ T2, (1)
0
where v > 0 and G(t) is a non-decreasing on [0, +00) operator-valued function such that
[ (dG(t
1+¢
0
Alternatively (see [14]) an operator-valued function V' (z) is Stieltjes if it is holomorphic in Ext[0, +00) and
Im[zV
mlVE)] S, (3.2)
Imz

Theorem 3.2 below was stated in equivalent ways and proved in [4], [11], [12].
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Theorem 3.2 Let © be an L-system of the form (2.1). Then the impedance operator-valued function Ve (z)
defined by (2.3) is a Stieltjes function if and only if the main operator A of the system O is accretive.

At this point we need to note that since Stieltjes functions form a subset of Herglotz-Nevanlinna functions
then we can utilize the conditions (1.4) to form a class S(R) of all realizable Stieltjes functions presented in [4],
[12]. Clearly, S(R) is a subclass of N(R) of all realizable Herglotz-Nevanlinna functions described in details in
[7] and [8]. To see the specifications of the class S(R) we recall that aside of integral representation (3.1), any
Stieltjes function admits a representation (1.1). Applying condition (1.4) we obtain

1 + o0
Q=3 We(i)+ V(-] =7+ [
0
Combining the second part of condition (1.4) and (3.3) we conclude that

t

T G0, (3.3)

~vf =0, 3.4
for all f € E such that

/(dG(t)f, flg <o0 (3.5)

0

holds. Consequently, (3.4)—(3.5) is precisely the condition for V(z) € S(R).
We are going to focus though on the subclass Sy (R) of S(R) (see [4], [12]), whose definition is the following.

Definition 3.3 An operator-valued Stieltjes function V' (z) € [E, E] is said to be a member of the class Sy (R)
if in the representation (3.1) we have

Jucws.pe=o
0
for all non-zero f € FE.
We note that a function V' (z) can belong to the class Sy(R) and have an arbitrary constant v > 0 in the
representation (3.1).
The following statement [12] is the direct realization theorem for the functions of the class Sy (R).
Theorem 3.4 Let O be an accretive system of the form (2.1). Then the impedance operator-function Vg (2) of
the form (2.3) belongs to the class Sy(R).
The inverse realization theorem can be stated and proved (see [12]) for the classes Sy (R) as follows.
Theorem 3.5 Let an operator-valued function V (z) belong to the class Sy (R). Then V (z) admits a realization
by an accretive system © of the form (2.1) with J = 1.

4 Sectorial classes S ¢ and S ©>*2 and their realizations

Let a € (0, %) We introduce sectorial subclasses S of operator-valued Stieltjes functions as follows. An
operator-valued Stieltjes function V'(z) belongs to S¢ if

K.= Y ({Z’“V(Zk) —avla) (cot ) V*(zl)V(zk)} hi, hl> >0, @.1)
- 2k T A E
k=1
for an arbitrary sequence {z;} (kK =1,...,n) of (Imz; > 0) complex numbers and a sequence of vectors {hy, }
in E. For 0 < a; < as < 5, we have
S c 8 s,

where S denotes the class of all Stieltjes functions (Which corresponds to the case o = %) as follows from the
inequality

Kal S Kag S K’%
The following theorem [2], [4] refines the result of Theorem 3.2 as applied to the class S¢.

www.mn-journal.com (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1734 S. Belyi: Sectorial Stieltjes functions

Theorem 4.1 Let O be a scattering L-system of the form (2.1) with a densely defined non-negative symmetric
operator A. Then the impedance function Vg (2) defined by (2.3) belongs to the class S® if and only if the operator
A of the L-system © is a-sectorial.

Another class that we would like to introduce at this point is a special subclass of scalar Stieltjes functions.
Let

™
0§a1§a2§§.

We say that a scalar Stieltjes function V' (z) belongs to the class S *1-*2 if

tana; = lim V(x), tanay = linj()V(x). 4.2)

Tr——00

The following theorem [4] provides a connection between the classes S and S 1“2,
Theorem 4.2 Let © be a scattering L-system of the form

0= A K1 (4.3)
" \H.cHcH. C)’ '

with a densely defined non-negative symmetric operator A. Let also A be an a-sectorial (x)-extension of T €
A(A) Then the impedance function Vi (z) defined by (2.3) belongs to the class S“'*2, tan oy < tana, and T
is (aa — oy )-sectorial with the exact angle of sectoriality (ag — ay).

The corollary below treats the case when a in Theorem 4.2 is the exact angle of sectoriality of the operator 7.
Thus both operators 7" and A maintain the same exact angle.

Corollary 4.3 Let O of the form (4.3) be an L-system as in the statement of Theorem 4.2 and let o be the exact
angle of sectoriality of the operator T of the system ©. Then Vg (z) € S%.

Proof. According to Theorem 4.2 the exact angle of sectoriality is given by as — «vj, where
tanog = lim Vo(z), tanas = lim Vg(z).
T——00 r——0
It was also shown that tan o > tan ay. On the other hand, since in the statement of the current corollary « be the

exact angle of sectoriality of 7', then & = ay — 7 and hence tan(as — «;) > tan as. Therefore, ay = 0. O

Remark 4.4 Tt follows that under assumptions of Corollary 4.3, the impedance function Vg (2) has the form

oo

Vo) = / dG(t)
0

t—2z

For the remainder of this paper we will need to rely on the following theorem whose proof can be found in [4].

Theorem 4.5 Let © be an L-system of the form (4.3), where A is a (x)-extension of T € A(A) and A is a
closed densely defined non-negative symmetric operator with deficiency numbers (1, 1). If the impedance function
Vo (2) belongs to the class S, then A is a-sectorial, where

tana = tan g + 2\/tana1(tan ay —tanayg).

The next statement gives an explicit description of all the functions from the class S 12 that are realizable
as impedance functions of such L-systems that the exact angles of sectoriality of 7' and A coincide. Its proof
immediately follows from Theorems 4.2 and 4.5.

_ Theorem 4.6 Let © be an L-system of the form (4.3) with a densely defined non-negative symmetric operator
A. Then A is a-sectorial (x)-extension of an a-sectorial operator T € A(A) with the exact angle a € (0,7/2)
if and only if

V(_)(z) :/dG(t) c SO’([.
0

t—=z

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Moreover, the angle o can be found via the formula

tanaz/%(t). “4.4)
0

S L-systems with a Schrodinger operator

Let H = Lsfa,+o00) and I(y) = —y” + q(z)y, where ¢ is a real locally summable function. Suppose that the
symmetric operator

{Ay = —y" +q(2)y,

y(a) =y'(a) =0 (5.1)

has deficiency indices (1,1). Let D* be the set of functions locally absolutely continuous together with their first
derivatives such that [(y) € Ls[a, 400). Consider H, = Dom(A*) = D* with the scalar product

(v:2) = [ (@)@ + 1@ da, v, 2 € D"

Let
H. C Lofa,+00) C H_

be the corresponding triplet of Hilbert spaces. Consider the operators

{Thy—uy)——y +q(2)y, {T:y:umz—y +q(2)y, 52

hy(a) —y'(a) =0, hy(a) — ' (a) = 0.

The following theorem was proved in [4], [6].

Theorem 5.1 The set of all (x)-extensions of a non-self-adjoint Schridinger operator Ty, of the form (5.2) in
Lo [a, +00) can be represented in the form

1
Ay =—y" +q(x)y - T h [y'(a) — hy(a)] [ud(z — a) + &' (z — a)],
1 ~ (5.3)
Aty =—y" +q(a)y — T [y (a) = hy(a)] [pd(z — a) + 0" (z — a)].
Moreover, the formulas (5.3) establish a one-to-one correspondence between the set of all (x)-extensions of a
Schrodinger operator Ty, of the form (5.2) and all real numbers (i € [—00, +00].

Let A be a symmetric operator of the form (5.1) with deficiency indices (1,1), generated by the differential
operation I(y) = —y" + q(z)y. Let also i (x, A) (k = 1, 2) be the solutions of the following Cauchy problems:

I(p1) = Ao, l(p2) = A2,
®1 ((l,)\) = 07 502(0’7)‘) = _17
¢1(a,\) =1, ©h(a,\) =0,

It is well-known [1] that there exists a function m., () (called the Weyl-Titchmarsh function) for which
(P(xa )‘) = ¥2 (xv )‘) + mOO()‘>901 (mv )‘)
belongs to Ly[a, +00).

www.mn-journal.com (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



1736 S. Belyi: Sectorial Stieltjes functions

‘Suppose that the symmetric operator A of the form (5.1) with deficiency indices (1,1) is nonnegative, i.e.,
(A Lf ) > 0 for all f € Dom (A) It was shown in [19], [20] that the Schrodinger operator 7}, of the form (5.2)
is accretive if and only if

Reh > —mo(—0). (5.4)

The following theorem will be needed in the next section. Its proof can be located in [4].

Theorem 5.2 Let T}, (Imh > 0) be an accretive Schridinger operator of the form (5.2). Then for all real 1
satisfying the following inequality

(Im h)?
o= Moo (—0) + Reh +Reh,

the operators A in (5.3) define the set of all accretive (x)-extensions A of the operator T},. The operator T}, has a
unique accretive (x)-extension A if and only if

Reh = —moo(—0).
In this case this unique (x)-extension has the form

Ay = —y" +q(@)y + [hy(a) — ' (a)] 6(z — a),

- (5.5)
Ay =—y" + q(x)y + [hy(a) — y'(a)] (z — a).

Now we shall construct an L-system based on a non-self-adjoint Schrodinger operator. One can easily check
that the (x)-extension

Ay = —y" + q(x)y — b [v(a) — hy(a)] [ (z — a) + &' (z — a)], Tmh >0,

w—nh
of the non-self-adjoint Schrodinger operator 7}, of the form (5.2) satisfies the condition
A — A¥
ImA = = (.
where
(Imh)* ,
9= (e — a) + &' (x - a)]
i — hl

and §(z — a), 0’ (x — a) are the delta-function and its derivative at the point a, respectively. Moreover,
(Im h)?
|1 = hl

where y € Hy, g € H_, Hi C Ls(a,+00) C H_ and the triplet of Hilbert spaces is as discussed in
Theorem 5.1. Let E = C, K¢ = cg (¢ € C). It s clear that

(y,9) = [ny(a) —y'(a)],

K'y=(y,9), yeH, (5.6)
and Im A = K K*. Therefore, the array

A K1>

0= <H+ C Lyla,40) CH_ C 6.7

is an L-system with the main operator A of the form (5.3), the direction operator J = 1, and the channel operator
K of the form (5.6). Our next logical step is finding the transfer function of (5.7). It was shown in [4], [6] that

p—h me(A)+h

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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and

_ (moc(A) +p) Imh
Vo (A) = (1t — Reh) moo(\) + uReh — |h[2 (5:8)

The following theorem can be found in [4].
Theorem 5.3 Let © be an L-system of the form (5.7), where A is a (x)-extension of the form (5.3) of the

accretive Schridinger operator Ty, of the form (5.2). Then its impedance function Vo (z) is a Stieltjes function if
and only if

(Im h)?

—————— + Reh. 5.9
mm(fO)+Reh+ ¢ (59)

Reh > —moo(—0) and p>

6 Sectorial Schrodinger L-systems

Let O be an L-system of the form (5.7), where A is a (x)-extension (5.3) of the accretive Schrodinger operator
T},. The following theorem [4] takes place.

Theorem 6.1 If an accretive Schrodinger operator Ty, (Im h > 0) is a-sectorial, then

Im~h
= . '1
tan o Reh + me (—0) 6.1)

Conversely, if h, (Im h > 0) is such that Re h > —m(—0), then operator T}, of the form (5.2) is a-sectorial
and « is determined by (6.1). Moreover, Ty, is accretive but not a-sectorial for any o € (0,7/2) if and only if
Reh = —mo (—0).
It follows from Theorems 3.2 and 5.3 (see also [4]) that the operator A of O is accretive if and only if (5.9)
holds. Using (5.8) we can write the impedance function Vg (z) in the form
(moe(2) + 1) Tm h

Vo(2) = (1 — Reh) (Moo (2) + Reh) — (Tm h)?” (6.2)

Consider our system © with ;1 = 400. Then in (6.2) we obtain

Im~h

Volz) = Ty

Thus, in this case

Im~h
1. ‘/_ = 1. —————
1:~1>7<x> e (SIJ) 1'~1>700 mca(]}) =+ h

0, (6.3)

since Mmoo () — +00 as & — —oo. Moreover,

Imh

li = —
im Vo () me(—0) T h

Assuming that T}, is a-sectorial and hence Re h > —m . (—0), we use (4.2) and obtain

Imh
%li)r_noo Vo(x) =0=tan0 = tanay, a:l—i>n—10 Vol(x) = m = tan .

On the other hand since T}, is a-sectorial, then via Theorem 6.1 we have that

Imh

tana = tanas = m,

and hence, by Corollary 4.3, Vi (z) belongs to the class S*:“.
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1738 S. Belyi: Sectorial Stieltjes functions

Let now p # 400 and satisty the second inequality (5.9). Then

. . (Moo () + p) Imh Im~h
1 9 = 1 = = 4
e Vo(x) st (u—Reh) (meo(x) + Reh) — (Imh)?  pu—Reh ban o, ©4)

and

(Moo (=0) + p) Im A

(i —Roh) (moo(—0) + Reh) — (Imh)? om0 (6.5)

Hlimo Vo (z) =

Therefore, in this case Vg (z) € 512,

Theorem 6.2 Let O be an L-system of the form (5.7), where A is a (x)-extension of an a-sectorial operator
T, with the exact angle of sectoriality a € (0,7/2). Then A is an a-sectorial (x)-extension of T, (with the same
angle of sectoriality) if and only if ;1 = 400 in (5.3).

Proof. It follows from (6.3)—(6.5) that in this case Vg (2) € S% if and only if 4 = +oo. Thus using
Corollary 4.3 for the function Vi (z) we obtain that A is c-sectorial (x)-extension of 7},. O

We note that if 7}, is a-sectorial with the exact angle of sectoriality «, then it admits only one a-sectorial
(*)-extension A with the same angle of sectoriality c. Consequently, ;1 = +o0o and A has the form (5.5).

Theorem 6.3 Let O be an L-system of the form (5.7), where A is a (x)-extension of an a-sectorial operator

Ty, with the exact angle of sectoriality a € (0,7/2). Then A is accretive but not a-sectorial for any o € (0,7/2)
(x)-extension of Ty, if and only if in (5.3)

(Im h)?

Moo (—0) + Reh +Reh. (6.6)

H=Ho =

Proof. Let Vo(z) be the impedance function of our system ©. If in (6.4) we set u = o where pg is given
by (6.6), then

_ Imh Moo(—0) + Reh 1 7r

lim Ve (z) = - - —t (f . ) —tanay, 6.7

e Vo(2) o — Reh Imh tan o an 2 @ ana ©.7)
where oy = § — . On the other hand, using (6.5) with 1 = o we obtain
2
o (0o (<0) + 5 )

lim Vo (z) = s o (ZO) e = 00 = tan ~ = tanas. (6.8)

#==0 o (moo(—0) + Reh) — (Im h)? 2

Moo(—0)+Reh

Hence, (6.7) and (6.8) yield Vo (z) € S7~*7. Now, if we assume the a-sectoriality of A, then then by
Theorem 4.2

tana > tan ap = oo.
Therefore, A is accretive but not a-sectorial for any o € (0, 7/2).

Conversely, suppose, that A is an a-sectorial (x)-extension for some o € (0,7/2). Then, according to
Theorem 4.5, A is also (3-sectorial and

tan 8 = tan s + 2\/tanoz1 (tanay — tan ) < oo.
Hence, tan as # oo and it follows from (6.8) that ;1 # po. The theorem is proved. O

Note that it follows from the above theorem that any a-sectorial operator 7}, with the exact angle of sectoriality
a € (0,7/2) admits only one accretive (x)-extension A. This extension takes the form (5.3) with u = g where
Lo 18 given by (6.6).
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tan 3

tan©®

0

Fig.2 Angle of sectoriality 3.

Theorem 6.4 Let © be an accretive L-system of the form (5.7), where A is a (x)-extension of a 0-sectorial
operator Ty, Let also .. € (pg, +00) be a fixed value that parameterizes A via (5.3), pg be defined by (6.6), and
Vo (z) € 812 Then a (x)-extension A, of T), is [3-sectorial for any p € ({1, +00) with

tan 0 = tanaq + 2v/tana; tan as. (6.9)

Proof. According to Theorems 4.2 and 4.5, a (p-sectorial operator A of an L-system of the form (5.7) with
the impedance function of the class S*"“? is also «-sectorial with

tan a = tan as 4+ 2v/tan o; (tan oy — tan o).

But then, clearly

tana < tan 8 = tan oy + 2v/tan oy tan as, (6.10)

and hence this A is also 3-sectorial.

Now suppose 1 € (pg,+00). Then it follows from Theorem 6.3 that the operator A in L-system © of the
form (5.7) is p-sectorial (with some angle ¢) for any such y in parametrization (5.3). Using (6.4) and (6.5) on
the impedance function Vg (2) of this L-system we can define a function

f(p) = tanag + 2v/tan oy tan as

"~ (4 —Reh) (moo(z) + Reh) — (Imh)? (6.11)

2\/ Imh (Moo () + ) Imh

i—Reh (1 —Reh) (moo(z) + Reh) — (Imh)?

By direct check one confirms that f (1) is a decreasing function defined on (1, +00) with the range [tan 6, +00),
where 0 is the angle of sectoriality of the operator 7}, and tan @ is given by (6.1). The graph of this functions is
schematically given on the Figure 1.

Next we take the («)-extension A that is parameterized via (5.3) by the fixed value p1. € (o, +00) from the
premise of our theorem. According to our derivations above this A is 3-sectorial with 3 given by (6.9). But then
for every 1 € (i, +00) the values of f() are going to be smaller than tan 5 (see Figure 2). Consequently, for
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a (x)-extension A, that is parameterized by the value of 1 € [u, +00) the following obvious inequalities take
place

[Tm (A, f, /)l < f(p)Re (A f, f) < (tanB) Re (AL f, f), [ €Hy.
Hence, any (x)-extension A, parameterized by a y1 € 11, +00) is f-sectorial. O

Note that Theorem 6.4 provides us with a value 3 which serves as a universal angle of sectoriality for the entire
family of (x)-extensions A of the form (5.3). The next theorem provides us with the existence of a real number
w* described in Theorem 6.4.

Theorem 6.5 Letr O be an L-system of the form (5.7), where A is an a-sectorial (x)-extension of a 0-sectorial
operator Tj, and Vo (z) € S**2, Then there exists a real number 1* that can be derived from equation (6.9)
such that any (x)-extension A parameterized by a i € [+, +00) is a B-sectorial (x)-extension of Tj,.

The proof directly follows from Theorem 6.4.
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