Test 2

NOVEMBER 30, 2000

Dr. S. Belyi

Name			

MTH 6620

S.S.N.		

1. Express each permutation as a product of disjoint cycles.

- (a) $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 & 1 \end{bmatrix}$,
- (b) (1,9,2,4)(1,7,6,5,9)(1,2,3,8).

- 2. Compute gfg^{-1} for each pair f, g.
 - (a) f = (1, 3, 5, 6); g = (2, 5, 4, 6),

(b)
$$f = (1,4)(2,3);$$
 $g = (1,2,3).$

3. List all the elements of S_4 , written as cycles, and find cyclic subgroups of S_4 that have three different orders.

4. List all the conjugate classes in S_4 , find the c_a 's, and verify the class equation.

5. If N is a normal subgroup of G and $a \in N$, show that every conjugate of a in G is also in N.

6. Prove that if o(G) = pq, (p > q) where p and q are two distinct primes, then G is not simple (i.e. has a non-trivial normal subgroup).

7. Let o(G) = p q, (p < q), p and q are two distinct primes. Show that if $p \nmid (q-1)$, then G is cyclic.

8. Show that in a group G of order p^2 any normal subgroup of order p must lie in the center of G.

9. Let G be a group of order 30. Show that a 3-Sylow subgroup or a 5-Sylow subgroup of G must be normal.

10. If G is a group of order 231, prove that the 11-Sylow subgroup is the center of G.