Review for TEST 4

Matrix Analysis

MTH 3331

1. Find the length of the vector (0, -2, 2, 2).

Answer: $2\sqrt{3}$.

2. Find a unit vector in the direction opposite to that of (-3, 0, -4).

Answer: $(-\frac{3}{5}, 0, \frac{4}{5})$.

3. Find $(3\vec{u}) \cdot \vec{v}$ if $\vec{u} = (1, 2, 3)$ and $\vec{v} = (1, 0, 1)$

Answer: 12.

4. Find the angle between the vectors (0, 1, 0, 1) and (3, 3, 3, 3).

Answer:
$$\frac{\pi}{4}$$
.

5. Find the distance between the vectors $\vec{u} = (3, -2, 2)$ and $\vec{v} = (-3, 5, 0)$. Answer: $\sqrt{89}$.

6. Find $\text{proj}_{\vec{v}}\vec{u}$ if $\vec{u} = (1,2)$ and $\vec{v} = (2,1)$. *Answer*: $(\frac{8}{5}, \frac{4}{5})$.

7. Use the inner product

$$\langle p,q\rangle = a_0b_0 + a_1b_1 + a_2b_2$$

to find $\langle p,q\rangle$, $\|p\|$, $\|q\|$, and d(p,q) for the polynomials in P_2 , where

$$p(x) = 1 - x + 3x^2,$$
 $q(x) = x - x^2.$

Answer: $-4, \sqrt{11}, \sqrt{2}, \sqrt{21}.$

8. Determine whether the set of vectors S in \mathbb{R}^3 is orthogonal, orthonormal, or neither.

$$S = \{(4, -1, 1), (-1, 0, 4), (-4, -17, -1)\}.$$

Answer: Orthogonal.

9. Look at problems 13–17, Section 5.3, page 310.

10. Use the Gram-Shmidt orthonormalization process to transform the basis $\{(1, -2, 2), (2, 2, 1), (2, -1, -2)\}$ into an orthonormal basis.

Answer: $\{(1/3, -2/3, 2/3), (2/3, 2/3, 1/3), (2/3, -1/3, -2/3)\}.$