
Copyright © 2012 Pearson Education, Inc. 

 

Chapter 5: 

 

Loops and Files 



Copyright © 2012 Pearson Education, Inc. 

 

5.1 

The Increment and Decrement 

Operators 



Copyright © 2012 Pearson Education, Inc. 

 

The Increment and Decrement 

Operators 

• ++ is the increment operator.  
 
It adds one to a variable. 
 
val++; is the same as val = val + 1; 
 

• ++ can be used before (prefix) or after (postfix) a 
variable: 
++val;     val++; 

 



Copyright © 2012 Pearson Education, Inc. 

 

The Increment and Decrement 

Operators 
• -- is the decrement operator.  

 
It subtracts one from a variable. 
 
val--; is the same as val = val - 1; 
 

• -- can be also used before (prefix) or after 
(postfix) a variable: 
--val;     val--; 

 



Copyright © 2012 Pearson Education, Inc. 

 

Increment and Decrement 

Operators in Program 5-1 

Continued… 



Copyright © 2012 Pearson Education, Inc. 

 

Increment and Decrement 

Operators in Program 5-1 



Copyright © 2012 Pearson Education, Inc. 

 

Prefix vs. Postfix 

•  ++ and -- operators can be used in 
complex statements and expressions 

• In prefix mode (++val, --val) the 
operator increments or decrements, then 
returns the value of the variable 

• In postfix mode (val++, val--) the 
operator returns the value of the variable, 
then increments or decrements 

 



Copyright © 2012 Pearson Education, Inc. 

 

Prefix vs. Postfix - Examples 

 int num, val = 12; 

 cout << val++; // displays 12,  

      // val is now 13; 

 cout << ++val; // sets val to 14, 

                 // then displays it 

 num = --val;   // sets val to 13, 

      // stores 13 in num 

 num = val--;   // stores 13 in num, 

        // sets val to 12 

 



Copyright © 2012 Pearson Education, Inc. 

 

Notes on Increment and 

Decrement 

• Can be used in expressions: 

 result = num1++ + --num2; 

• Must be applied to something that has a location 

in memory. Cannot have: 

 result = (num1 + num2)++; 

• Can be used in relational expressions: 

 if (++num > limit) 

 pre- and post-operations will cause different 

comparisons  



Copyright © 2012 Pearson Education, Inc. 

 

5.2 

Introduction to Loops: The while 

Loop 



Copyright © 2012 Pearson Education, Inc. 

 

Introduction to Loops:  
The while Loop 

• Loop: a control structure that causes a 

statement or statements to repeat 

•  General format of the while loop: 

 while (expression) 

     statement; 

•  statement; can also be a block of 

statements enclosed in { } 

 



Copyright © 2012 Pearson Education, Inc. 

 

The while Loop – How It Works 

while (expression) 

     statement; 

•  expression is evaluated 

– if true, then statement is executed, and 

expression is evaluated again 

– if false, then the loop is finished and 

program statements following statement 

execute 

 



Copyright © 2012 Pearson Education, Inc. 

 

The Logic of a while Loop 



Copyright © 2012 Pearson Education, Inc. 

 

The while loop in Program 5-3 



Copyright © 2012 Pearson Education, Inc. 

 

How the while Loop in Program 5-

3 Lines 9 through 13 Works  



Copyright © 2012 Pearson Education, Inc. 

 

Flowchart of the while Loop in 

Program 5-3 



Copyright © 2012 Pearson Education, Inc. 

 

The while Loop is a Pretest Loop 

expression is evaluated before the 
loop executes. The following loop will 
never execute: 
 
int number = 6; 

while (number <= 5) 

{ 

   cout << "Hello\n"; 

   number++; 

} 



Copyright © 2012 Pearson Education, Inc. 

 

Watch Out for Infinite Loops 

• The loop must contain code to make 
expression become false 

• Otherwise, the loop will have no way of 

stopping 

• Such a loop is called an infinite loop, 

because it will repeat an infinite number of 

times 

 



Copyright © 2012 Pearson Education, Inc. 

 

Example of an Infinite Loop 

int number = 1; 

while (number <= 5) 

{ 

   cout << "Hello\n"; 

} 



Copyright © 2012 Pearson Education, Inc. 

 

5.3 

Using the while Loop for Input 

Validation 



Copyright © 2012 Pearson Education, Inc. 

 

Using the while Loop for                 

Input Validation 

• Input validation is the process of 

inspecting data that is given to the 

program as input and determining whether 

it is valid. 

 

• The while loop can be used to create input 

routines that reject invalid data, and repeat 

until valid data is entered. 

 



Copyright © 2012 Pearson Education, Inc. 

 

Using the while Loop for                 

Input Validation 

• Here's the general approach, in 

pseudocode: 

 
Read an item of input. 

While the input is invalid 

     Display an error message. 

     Read the input again. 

End While 



Copyright © 2012 Pearson Education, Inc. 

 

Input Validation Example 

cout << "Enter a number less than 10: "; 

cin >> number; 

while (number >= 10) 

{ 

   cout << "Invalid Entry!" 

        << "Enter a number less than 10: "; 

   cin >> number; 

} 



Copyright © 2012 Pearson Education, Inc. 

 

Flowchart for Input Validation 



Copyright © 2012 Pearson Education, Inc. 

 

Input Validation in Program 5-5 



Copyright © 2012 Pearson Education, Inc. 

 

5.4 

Counters 



Copyright © 2012 Pearson Education, Inc. 

 

Counters 

• Counter: a variable that is incremented or 

decremented each time a loop repeats 

• Can be used to control execution of the 

loop (also known as the loop control 

variable) 

• Must be initialized before entering loop 

 



Copyright © 2012 Pearson Education, Inc. 

 

A Counter Variable Controls the 

Loop in Program 5-6 

Continued… 



Copyright © 2012 Pearson Education, Inc. 

 

A Counter Variable Controls the 

Loop in Program 5-6 



Copyright © 2012 Pearson Education, Inc. 

 

5.5 

The do-while Loop 



Copyright © 2012 Pearson Education, Inc. 

 

The do-while Loop 

•  do-while: a posttest loop – execute the loop, 
then test the expression 

• General Format: 
 do 

   statement;  // or block in { } 

 while (expression); 

 

• Note that a semicolon is required after 
(expression) 

 



Copyright © 2012 Pearson Education, Inc. 

 

The Logic of a do-while Loop 



Copyright © 2012 Pearson Education, Inc. 

 

An Example do-while Loop 

int x = 1; 

do 

{ 

    cout << x << endl; 

} while(x < 0); 

Although the test expression is false, this loop will 
execute one time because do-while is a posttest 

loop. 



Copyright © 2012 Pearson Education, Inc. 

 

A do-while Loop in Program 5-7 

Continued… 



Copyright © 2012 Pearson Education, Inc. 

 

A do-while Loop in Program 5-7 



Copyright © 2012 Pearson Education, Inc. 

 

do-while Loop Notes 

• Loop always executes at least once 

• Execution continues as long as 
expression is true, stops repetition 

when expression becomes false 

• Useful in menu-driven programs to bring 

user back to menu to make another choice 

(see Program 5-8 on pages 245-246) 

 



Copyright © 2012 Pearson Education, Inc. 

 

5.6 

The for Loop 



Copyright © 2012 Pearson Education, Inc. 

 

The for Loop 

• Useful for counter-controlled loop 

 

• General Format: 

 

 for(initialization; test; update) 

     statement; // or block in { } 

 

• No semicolon after the update expression or 

after the ) 

 



Copyright © 2012 Pearson Education, Inc. 

 

for Loop - Mechanics 

for(initialization; test; update) 

  statement; // or block in { } 

 

1) Perform initialization 

2) Evaluate test expression   

– If true, execute statement 

– If false, terminate loop execution 

3) Execute update, then re-evaluate test 

expression 

 



Copyright © 2012 Pearson Education, Inc. 

 

for Loop - Example 

int count; 

 

for (count = 1; count <= 5; count++) 

cout << "Hello" << endl; 



Copyright © 2012 Pearson Education, Inc. 

 

A Closer Look                                           

at the Previous Example 



Copyright © 2012 Pearson Education, Inc. 

 

Flowchart for the Previous Example 



Copyright © 2012 Pearson Education, Inc. 

 

A for Loop in Program 5-9 

Continued… 



Copyright © 2012 Pearson Education, Inc. 

 

A for Loop in Program 5-9 



Copyright © 2012 Pearson Education, Inc. 

 

A Closer Look at Lines 15 through 

16 in Program 5-9 



Copyright © 2012 Pearson Education, Inc. 

 

Flowchart for Lines 15 through 16 

in Program 5-9 



Copyright © 2012 Pearson Education, Inc. 

 

When to Use the for Loop 

• In any situation that clearly requires 

– an initialization 

– a false condition to stop the loop 

– an update to occur at the end of each iteration 

 



Copyright © 2012 Pearson Education, Inc. 

 

The for Loop is a Pretest Loop 

• The for loop tests its test expression 

before each iteration, so it is a pretest 

loop. 

• The following loop will never iterate: 

 
for (count = 11; count <= 10; count++) 

   cout << "Hello" << endl; 

 



Copyright © 2012 Pearson Education, Inc. 

 

for Loop - Modifications 

• You can have multiple statements in the 
initialization expression. Separate 
the statements with a comma: 
 
int x, y; 
for (x=1, y=1; x <= 5; x++) 
{ 
   cout << x << " plus " << y 
        << " equals " << (x+y) 
        << endl; 
} 

 

Initialization Expression 



Copyright © 2012 Pearson Education, Inc. 

 

for Loop - Modifications 

• You can also have multiple statements in 
the test expression. Separate the 
statements with a comma: 
 
int x, y; 
for (x=1, y=1; x <= 5; x++, y++) 
{ 
   cout << x << " plus " << y 
        << " equals " << (x+y) 
        << endl; 
} 

 

Test Expression 



Copyright © 2012 Pearson Education, Inc. 

 

for Loop - Modifications 

• You can omit the initialization 

expression if it has already been done: 
 

  int sum = 0, num = 1; 

  for (; num <= 10; num++) 

   sum += num; 

 



Copyright © 2012 Pearson Education, Inc. 

 

for Loop - Modifications 

• You can declare variables in the 
initialization expression: 

 

 int sum = 0; 

 for (int num = 0; num <= 10; 

num++) 

   sum += num; 

 

 The scope of the variable num is the for loop. 

 



Copyright © 2012 Pearson Education, Inc. 

 

5.7 

Keeping a Running Total 



Copyright © 2012 Pearson Education, Inc. 

 

Keeping a Running Total 

• running total: accumulated sum of numbers from 
each repetition of loop 

• accumulator: variable that holds running total 
int sum=0, num=1; // sum is the 

while (num <= 10) // accumulator 

{   sum += num; 

   num++; 

} 

cout << "Sum of numbers 1 – 10 is" 

     << sum << endl; 

 



Copyright © 2012 Pearson Education, Inc. 

 

Logic for Keeping a Running Total 



Copyright © 2012 Pearson Education, Inc. 

 

A Running Total in Program 5-12 

Continued… 



Copyright © 2012 Pearson Education, Inc. 

 

A Running Total in Program 5-12 



Copyright © 2012 Pearson Education, Inc. 

 

5.8 

Sentinels 



Copyright © 2012 Pearson Education, Inc. 

 

Sentinels 

• sentinel: value in a list of values that 
indicates end of data 
 

• Special value that cannot be confused with 
a valid value, e.g., -999 for a test score 
 

• Used to terminate input when user may 
not know how many values will be entered 

 



Copyright © 2012 Pearson Education, Inc. 

 

A Sentinel in Program 5-13 

Continued… 



Copyright © 2012 Pearson Education, Inc. 

 

A Sentinel in Program 5-13 



Copyright © 2012 Pearson Education, Inc. 

 

5.9 

Deciding Which Loop to Use 



Copyright © 2012 Pearson Education, Inc. 

 

Deciding Which Loop to Use 

• The while loop is a conditional pretest loop  
– Iterates as long as a certain condition exits 

– Validating input 

– Reading lists of data terminated by a sentinel 
 

• The do-while loop is a conditional posttest loop  
– Always iterates at least once 

– Repeating a menu 
 

• The for loop is a pretest loop 
– Built-in expressions for initializing, testing, and updating 

– Situations where the exact number of iterations is known 

 



Copyright © 2012 Pearson Education, Inc. 

 

5.10 

Nested Loops 



Copyright © 2012 Pearson Education, Inc. 

 

Nested Loops 

• A nested loop is a loop inside the body of 

another loop 

• Inner (inside), outer (outside) loops: 

 

for (row=1; row<=3; row++)  //outer 

 for (col=1; col<=3; col++)//inner 

    cout << row * col << endl; 

 



Copyright © 2012 Pearson Education, Inc. 

 

Nested for Loop in Program 5-14 

Inner Loop 

Outer Loop 



Copyright © 2012 Pearson Education, Inc. 

 

Nested Loops - Notes 

• Inner loop goes through all repetitions for 
each repetition of outer loop 
 

• Inner loop repetitions complete sooner 
than outer loop 
 

• Total number of repetitions for inner loop 
is product of number of repetitions of the 
two loops.   

 



Copyright © 2012 Pearson Education, Inc. 

 

5.11 

Using Files for Data Storage 



Copyright © 2012 Pearson Education, Inc. 

 

Using Files for Data Storage 

• Can use files instead of keyboard, monitor 
screen for program input, output 

• Allows data to be retained between 
program runs 

• Steps: 

– Open the file 

– Use the file (read from, write to, or both) 

– Close the file 

 



Copyright © 2012 Pearson Education, Inc. 

 

Files: What is Needed 

• Use fstream header file for file access 

• File stream types: 
 ifstream for input from a file 

 ofstream for output to a file 

 fstream for input from or output to a file 

• Define file stream objects: 
 ifstream infile; 

 ofstream outfile; 

 



Copyright © 2012 Pearson Education, Inc. 

 

Opening Files 

• Create a link between file name (outside the program) 
and file stream object (inside the program) 

• Use the open member function: 
 infile.open("inventory.dat"); 

 outfile.open("report.txt"); 

• Filename may include drive, path info. 

• Output file will be created if necessary; existing file will 
be erased first 

• Input file must exist for open to work 

 



Copyright © 2012 Pearson Education, Inc. 

 

Testing for File Open Errors 

• Can test a file stream object to detect if an open 
operation failed: 
 infile.open("test.txt"); 

 if (!infile) 

 { 

   cout << "File open failure!"; 

 } 

• Can also use the fail member function 

 



Copyright © 2012 Pearson Education, Inc. 

 

Using Files 

• Can use output file object and << to send 

data to a file: 

 outfile << "Inventory report"; 

• Can use input file object and >> to copy 

data from file to variables: 

 infile >> partNum; 

 infile >> qtyInStock >> 

qtyOnOrder; 

 



Copyright © 2012 Pearson Education, Inc. 

 

Using Loops to Process Files 

• The stream extraction operator >> returns 

true when a value was successfully read, 

false otherwise 

 

• Can be tested in a while loop to continue 

execution as long as values are read from 

the file: 

 while (inputFile >> number) ... 

 



Copyright © 2012 Pearson Education, Inc. 

 

Closing Files 

• Use the close member function: 

 infile.close(); 

 outfile.close(); 

• Don’t wait for operating system to close 
files at program end: 

– may be limit on number of open files 

– may be buffered output data waiting to send 
to file 

 



Copyright © 2012 Pearson Education, Inc. 

 

Letting the User Specify a 

Filename 

• The open member function requires that 

you pass the name of the file as a null-

terminated string, which is also known as 

a C-string.  

• String literals are stored in memory as 

null-terminated C-strings, but string 

objects are not. 



Copyright © 2012 Pearson Education, Inc. 

 

Letting the User Specify a 

Filename 

• string objects have a member function 

named c_str  

– It returns the contents of the object formatted 

as a null-terminated C-string.  

– Here is the general format of how you call the 
c_str function: 

        

     stringObject.c_str() 



Copyright © 2012 Pearson Education, Inc. 

 

Letting the User Specify a 

Filename in Program 5-24 

Continued… 



Copyright © 2012 Pearson Education, Inc. 

 

Letting the User Specify a 

Filename in Program 5-24 



Copyright © 2012 Pearson Education, Inc. 

 

5.12 

Breaking and Continuing a Loop 



Copyright © 2012 Pearson Education, Inc. 

 

Breaking Out of a Loop 

• Can use break to terminate execution of 

a loop 

 

• Use sparingly if at all – makes code harder 

to understand and debug 

 

• When used in an inner loop, terminates 

that loop only and goes back to outer loop 

 



Copyright © 2012 Pearson Education, Inc. 

 

The continue Statement 

• Can use continue to go to end of loop 

and prepare for next repetition 

–  while, do-while loops: go to test, repeat 

loop if test passes 

–  for loop: perform update step, then test, 

then repeat loop if test passes 

• Use sparingly – like break, can make 

program logic hard to follow 

 


