Chapter 7:

Arrays

Addison-Wesley
is an imprint of

HFVSTOLN M Copyright © 2012 Pearson Education, Inc.
B

STARTING OUT WITH

C++

From Control Structures
through Obijects

seventh edition

TONY GADDIS

| STARTINGOUTWITH e

From Control Structures

through Objects
; | 1 TONY GADDIS

seventh edition

Arrays Hold Multiple Values

Copyright © 2012 Pearson Education, Inc.

Arrays Hold Multiple Values

« Array: variable that can store multiple
values of the same type

» Values are stored in adjacent memory
locations

* Declared using [] operator:
int tests[5];

Copyright © 2012 Pearson Education, Inc.

Array - Memory Layout

 The definition:
int tests[5];

allocates the following memory:

I P N .

first second third fourth fifth
element element element element element

Copyright © 2012 Pearson Education, Inc.

Array Terminology

In the definition int tests[5];
« int IS the data type of the array elements

« tests IS the name of the array

«5,1In [5], Isthe size declarator. It shows
the number of elements In the array.

* The size of an array Is (hnumber of
elements) * (size of each element)

Copyright © 2012 Pearson Education, Inc.

Array Terminology

* The size of an array Is:
— the total number of bytes allocated for it

— (number of elements) * (number of bytes for
each element)

« Examples:

int tests[5] IS an array of 20 bytes,
assuming 4 bytes for an int

long double measures[10]Is an array of
80 bytes, assuming 8 bytes for a 1ong double

Copyright © 2012 Pearson Education, Inc.

Size Declarators

 Named constants are commonly used as
Size declarators.

const 1nt SIZE = 5;
int tests[SIZE];

* This eases program maintenance when
the size of the array needs to be changed.

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
; | 2 TONY GADDIS

seventh edition

Accessing Array Elements

Copyright © 2012 Pearson Education, Inc.

Accessing Array Elements

 Each element in an array Is assigned a
unigue subscript.

* Subscripts start at O

subscripts:
0 1 2 3 4

Copyright © 2012 Pearson Education, Inc.

Accessing Array Elements

* The last element’s subscript is n-1 where n
IS the number of elements Iin the array.

subscripts:
0 1 2 3 4

Copyright © 2012 Pearson Education, Inc.

Accessing Array Elements

* Array elements can be used as regular variables:
tests[0] = 79;
cout << tests[0];
ciln >> tests[1l];
tests[4] = tests[0] + tests[1l];

« Arrays must be accessed via individual
elements:

cout << tests; // not legal

Copyright © 2012 Pearson Education, Inc.

Program 7-1

// This program asks for the number of hours worked

// by six employees.
#include <iostream>
using namespace std;

int main()

{

const int NUM_EMPLOYEES
int hours[NUM EMPLOYEES];

It stores the values in an array.

// Get the hours worked by each employee.
cout << "Enter the hours worked by "
<< NUM EMPLOYEES << " employees: ";

cin
cin
cin
cin
cin
cin

Copyright © 2012 Pearson Education, Inc.

ey
ey
=
=
=
>

hours[0];
hours[1];
hours([2];
hours[3];
hours[4];
hours[5];

(Program Continues)

}

// Display the values in the array.

cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<

"The hours you entered are:";
" " << hours[0];

" " << hours[1l];

" " << hours[2];

" " << hours[3];

" " << hours[4];

" " << hours[5] << endl:

return 0;

Program Output with Example Input Shown in Bold

Enter the hours worked by 6 employees: 2012 40 30 30 15 [Enter]
The hours you entered are: 20 12 40 30 30 15

Here are the contents of the hours array, with the values
entered by the user in the example output:

hours([0]

1

hours[1l] hours[2] hours([3] hours([4] hours([5]

l

l l 1 l

20

12

40 30 30 15

Copyright © 2012 Pearson Education, Inc.

Accessing Array Contents

« Can access element with a constant or
literal subscript:
cout << tests[3] << endl;

« Can use integer expression as subscript:

int 1 = b5;
cout << tests[1] << endl;

Copyright © 2012 Pearson Education, Inc.

Using a Loop to Step Through

an Array

« Example — The following code defines an
array, numbers, and assigns 99 to each

element:

const 1nt ARRAY SIZE = 5;
int numbers[ARRAY SIZE];

for (int count = 0; count < ARRAY SIZE; count++)
numbers [count] = 99;

Copyright © 2012 Pearson Education, Inc.

A Closer Look At the Loop

The loop ends when the
The variable count starts at 0, variable count reaches 5, which
which is the first valid subscript value. is the first invalid subscript value.

\ /

for (count = 0; count < ARRAY SIZE; count++)
numbers[count] = 99; T

The variable count is

incremented after
each iteration.

Copyright © 2012 Pearson Education, Inc.

Default Initialization

* Global array = all elements initialized to 0
by default

* Local array - all elements uninitialized by
default

Copyright © 2012 Pearson Education, Inc.

| STARTINGOUTWITH e

From Control Structures

through Objects
; H 3 TONY GADDIS

No Bounds Checking in C++

seventh edition

Copyright © 2012 Pearson Education, Inc.

No Bounds Checking in C++

 When you use a value as an array
subscript, C++ does not check it to make
sure it Is a valid subscript.

* In other words, you can use subscripts
that are beyond the bounds of the array.

Copyright © 2012 Pearson Education, Inc.

Code From Program 7-5

array, and then writes five values to it!

const int SIZE = 3:

int wvalues|[SIZE];
int count;

// Constant for the array size
// Bn array of 2 integers
// Loop counter variable

The following code defines a three-element

// Attempt to store five numbers in the three-element array

cout << "I will store 5 numbers in a 3

for (count = 0; count < 5; count++)
values[count] = 100;

Copyright © 2012 Pearson Education, Inc.

3 element array!in";

What the Code Does

The way the values array is set up in memory.
The outlined area represents the array.

Memory outside the array Memory outside the array
(Each block = 4 bytes) (Each block = 4 bytes)

values[0] values[1l] values[2]

How the numbers assigned to the array overflow the array's boundaries.
The shaded area is the section of memory illegally written to.

Anything previously stored
here is overwritten.

100 100 “ 100 100

values[0] values[1l] values([2] values[3] values([4]

(Does not exist) (Does not exist)

Copyright © 2012 Pearson Education, Inc.

No Bounds Checking in C++

* Be careful not to use invalid subscripts.

* Doing so can corrupt other memory
locations, crash program, or lock up
computer, and cause elusive bugs.

Copyright © 2012 Pearson Education, Inc.

Off-By-One Errors

* An off-by-one error happens when you use
array subscripts that are off by one.

* This can happen when you start subscripts
at 1 rather than O:

// This code has an off-by-one error.

const int SIZE = 100;

int numbers[SIZE];

for (int count = 1; count <= SIZE; count++)
numbers [count] = 0;

Copyright © 2012 Pearson Education, Inc.

(.4

Array Initialization

From Control Structures

through Objects
; [| I TONY GADDIS

seventh edition

Array Initialization

Copyright © 2012 Pearson Education, Inc.

Array Initialization

* Arrays can be initialized with an
Initialization list:

const 1nt SIZE = 5;
int tests[SIZE] = {79,82,91,77,84};

* The values are stored in the array in the
order in which they appear Iin the list.

 The initialization list cannot exceed the
array size.

Copyright © 2012 Pearson Education, Inc.

7-26

Code From Program 7-6

const int MONTHS
int days[MONTHS]

12:

{ 31, 28, 21, 30,
i1, 30, 21, 31,
30, 31, 20, 31%:

for (int count = 0; count < MONTHS; count++)

{
cout =< "Month " << (count + 1) << " has ";
cout << days|[count] << " days.\n";
h
Program Output

Month 1 has 21 days.

Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 20 days.
Month 5 has 21 days.
Month & has 20 days.
Month 7 has 21 days.
Month 8 has 21 days.
Month 9 has 20 days.

Month 10 has 31 days.
Month 11 has 30 days.
Month 12 has 31 days.

Copyright © 2012 Pearson Education, Inc.

Partial Array Initialization

* If array Is Initialized with fewer initial

values than the size declarator, the
remaining elements will be setto 0:

int numbers([7] = {1, 2, 4, 8};

]
Uninitialized Elements

1 2 = 8 0 0 0

numbers numbers numbers numbers numbers numbers numbers

(0] [1] (2] (3] [4] [S] (6]

Copyright © 2012 Pearson Education, Inc.

Implicit Array Sizing

« Can determine array size by the size of
the initialization list:
int quizzes[]={12,17,15,11};

12 17 15 11

* Must use either array size declarator or
Initialization list at array definition

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
; | 5 TONY GADDIS

seventh edition

Processing Array Contents

Copyright © 2012 Pearson Education, Inc.

Processing Array Contents

* Array elements can be treated as ordinary
variables of the same type as the array

* When using ++, —- operators, don’t
confuse the element with the subscript:
tests[1]++; // add 1 to tests[i]
tests[i++]; // increment i, no
// effect on tests

Copyright © 2012 Pearson Education, Inc.

Array Assignment

To copy one array to another,

* Don't try to assign one array to the other:
tests; // Won't work

newlTests

* Instead, assign element-by-element:
for (i = 0; i < ARRAY SIZE; i++)

newTests[1] = tests[1];

Copyright © 2012 Pearson Education, Inc.

Printing the Contents of an
Array

* You can display the contents of a
character array by sending its name to
cout:

char fName|[] = "Henrvy";
cout << fName << endl;

But, this ONLY works with character arrays!

Copyright © 2012 Pearson Education, Inc.

Printing the Contents of an
Array

* For other types of arrays, you must print
element-by-element:

for (1 = 0; 1 < ARRAY_SIZE; 1++)
cout << tests[1] << endl;

Copyright © 2012 Pearson Education, Inc.

Summing and Averaging
Array Elements

« Use a simple loop to add together array
elements:

int tnum;

double average, sum = 0;

for(tnum = 0; tnum < SIZE; tnum++)
sum += tests|[tnum];

* Once summed, can compute average.
average = sum / SIZE;

Copyright © 2012 Pearson Education, Inc.

Finding the Highest Value in an
Array

int count;

int highest;

highest = numbers[0];

for (count = 1; count < SIZE; count++)

{

1f (numbers[count] > highest)
highest = numbers[count];

When this code is finished, the highest variable will contains the highest value
in the numbers array.

Copyright © 2012 Pearson Education, Inc.

Finding the Lowest Value In an
Array

int count;
int lowest;
lowest = numbers|[0];
for (count = 1; count < SIZE; count++)
{
1f (numbers[count] < lowest)
lowest = numbers|[count];

When this code is finished, the 1owest variable will contains the lowest value in
the numbers array.

Copyright © 2012 Pearson Education, Inc.

Partially-Filled Arrays

e If It IS unknown how much data an

array will be holding:

— Make the array large enough to hold the

largest expected number of e

—Use a counter variable to kee
the number of items stored In

Copyright © 2012 Pearson Education, Inc.

ements.

0 track of
the array.

Comparing Arrays

 To compare two arrays, you must compare
element-by-element:

const int SIZE = 5;

int firstArray[SIZE] = { 5, 10, 15, 20, 25 };

int secondArray([SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable

int count = 0; // Loop counter variable
// Compare the two arrays.

while (arraysEqual && count < SIZE)

{

if (firstArray|[count] != secondArray[count])
arrayskEqual = false;
count++;

}
if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
; [| 6 TONY GADDIS

Using Parallel Arrays

seventh edition

Copyright © 2012 Pearson Education, Inc.

Using Parallel Arrays

« Parallel arrays: two or more arrays that
contain related data

» A subscript Is used to relate arrays:
elements at same subscript are related

* Arrays may be of different types

Copyright © 2012 Pearson Education, Inc.

Parallel Array Example

const int SIZE = 5; // Array size

int 1d[SIZE]; // student ID
double average[SIZE]; // course average
char grade[SIZE]; // course grade

for(int 1 = 0; 1 < SIZE; i++)
{

cout << "Student ID: " << 1d[1]
<< " average: " << average[i]
<< " grade: " << grade[i]

<< endl;

Copyright © 2012 Pearson Education, Inc.

Program 7-12

// This program uses two parallel arrays: one for hours
// worked and one for pay rate.

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int NUM _EMPLOYEES = 5; // Number of employees
int hours[NUM EMPLOYEES]; // Holds hours worked
double payRate[NUM EMPLOYEES]; // Holds pay rates

// Input the hours worked and the hourly pay rate.
cout << "Enter the hours worked by " << NUM EMPLOYEES

<< " employees and their\n"
<< "hourly pay rates.\n";

for (int index = 0; index < NUM EMPLOYEES; index++)

{

cout << "Hours worked by employee #" << (index+l) << ": ";

cin >> hours[index]:

cout << "Hourly pay rate for employee #" << (index+1) << ": ";
cin >> payRate[index];

(Program Continues)

Copyright © 2012 Pearson Education, Inc.

Program 7-12 (Continued)

// Display each employee's gross pay.

cout << "Here is the gross pay for each employee:\n";
cout << fixed << showpoint << setprecision(2);

for (int index = 0; index < NUM_EMPLOYEES; index++)

{
double grossPay = hours[index] * payRate[index];
cout << "Employee #" << (index + 1);
cout << ": $" << grossPay << endl;

}

return 0;

}

Program Output with Example Input Shown in Bold

Enter the hours worked by 5 employees and their
hourly pay rates.

Hours worked by employee #1: 10 [Enter]
Hourly pay rate for employee #1: 9.75 [Enter]
Hours worked by employee #2: 15 [Enter]
Hourly pay rate for employee #2: 8.62 [Enter]
Hours worked by employee #3: 20 [Enter]
Hourly pay rate for employee #3: 10.50 [Enter]
Hours worked by employee #4: 40 [Enter]
Hourly pay rate for employee #4: 18.75 [Enter]
Hours worked by employee #5: 40 [Enter]
Hourly pay rate for employee #5: 15.65 [Enter]

Copyright © 2012 Pearson Education, Inc.

(program output continues)

Program 7-12 fcontinued)

Here is the gross pay for each employee:
Employee #1: $597.50

Employee #2: 5129.30

Employee #3: 5210.00

Employee #4: 5750.00

Employee #5: 5626.00

The hours and payRate arrays are related through their subscripts:

10 15 20 40 40

hours [0] hours [1] hours [2] hours [3] hours [4]

R

Employee Employee Employee Employee Employee

#1 #2 #3 #4 #5
.78 B.62 10.50 18.75 15.65

payRate [0] payRate [1l] payRate [2] payRate [3] payRate [4]

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
-
; n] TONY GADDIS

seventh edition

Arrays as Function Arguments

Copyright © 2012 Pearson Education, Inc.

Arrays as Function Arguments

« To pass an array to a function, just use the array
name:

showScores (tests) ;
« To define a function that takes an array

parameter, use empty [] for array argument:
vold showScores (int []);

// function prototype
vold showScores (int tests|[])

// function header

Copyright © 2012 Pearson Education, Inc.

Arrays as Function Arguments

 When passing an array to a function, it is common

to pass array size so that function knows how many
elements to process:

showScores (tests, ARRAY SIZE);

* Array size must also be reflected in prototype,
header:

vold showScores(int [], 1nt);

// function prototype
vold showScores (int tests|[], 1nt size)

// function header

7-48
Copyright © 2012 Pearson Education, Inc.

Program 7-14

/¢ This program demonstrates an array being passed to a function.
tinclude <iostream>

using namespace std;

vold showValues(int [], int); // Function prototype

int main()

1
const int ARRAY SIZE = 8;
int numbers[ARRAY SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
showValues (numbers, ARRAY SIZE);
return 0:
t

(Program Continues)

Copyright © 2012 Pearson Education, Inc.

Program 7-14 (Continued)

;'.ft*##*#*#*#**t*#*#*1'."#'.'!"#'.'!'1'."#1'.".'r*#*#*#*#*##*t*t*t#*t*#*
// Definition of function showValue. *
// This function accepts an array of integers and *
// the array's size as its arquments. The contents *

// of the array are displayed. *
l.-".,.-'ir-.'r-.'r#*#*#*#**#*#*#*##*#*#*ir-.'r*#*#*#*#**#*#*#*##*#*#*

volid showValues(int nums|], int size)

{
for (int index = 0; index < size; index++)
cout << nums|[index] << " ";
cout << endl:
¥

Program Output
5 10 15 20 25 30 35 40

Copyright © 2012 Pearson Education, Inc.

Modifying Arrays Iin Functions

* Array names in functions are like
reference variables — changes made to
array in a function are reflected in actual
array In calling function

* Need to exercise caution that array Is not
Inadvertently changed by a function

Copyright © 2012 Pearson Education, Inc.

STARTING OUT WITH ‘ e

From Control Structures

through Objects
; | 8 TONY GADDIS

Two-Dimensional Arrays

seventh edition

Copyright © 2012 Pearson Education, Inc.

Two-Dimensional Arrays

« Can define one array for multiple sets of
data

» Like a table in a spreadsheet
« Use two size declarators in definition:

const int ROWS = 4, COLS = 3;
int exams[ROWS] [COLS] ;

* First declarator iIs number of rows:
second I1s number of columns

Copyright © 2012 Pearson Education, Inc.

Two-Dimensional Array
Representation

const 1nt ROWS

= 4,

exams [ROWS] [COLS] ;

ns0 =

columns

COLS = 3;

exams|[0] [0O]

exams|[0] [1]

exams|[0] [2]

exams[1][0]

exams[1][1]

exams[1l][2]

exams[2] [0]

exams[2][1]

exams[2] [2]

exams[3][0]

exams[3][1]

exams [3] [2]

« Use two subscripts to access element:

exams[2] [2] =

Copyright © 2012 Pearson Education, Inc.

86;

int

Program 7-18

// This program demonstrates a two-dimensional array.

tinclude <iostream:
tinclude <iomanip>
using namespace std;

int main()

{
const int NUM DIVS
const int NUM QTRS = Iy
double sales[NUM DIVS][NUM QTRs]; //
double totalSales = 03 b
int diwv, gtr; /o

o = L
— TmE

//

cout =< "This program will calculate

cout << "all the company's divisions.

Number of divisions

MNumber of quarters

Array with 3 rows and 4 columns.
To hold the total sales.

Loop counters.

the total sales ofin";
'.“'nll ;

cout =< "Enter the following sales information:ini\n";

Copyright © 2012 Pearson Education, Inc.

(program continues)

Program 7-18 (continued)

{/{ Hested loops to f£ill the array with quarterly
{f sales figures for each division.
for (div = 0; div < NUM DIVS; div++)

1
for (gtr = 0; gtr < NUM QTRS; gtr++)
{
cout << "Division " << (div + 1);
cout << ", Quarter " << (gtr + 1) =< ": 5";
cin »» sales[div][gtr]:
h
cont << endl; // Print blank line.
t

/4 HNested loops used to add all the elements.
for (div = 0; div < NUM DIVS; div++)
1
for (gtr = 0; gtr < NUM QTRS; gtr++)
totalfales += sales[div][gtr]:

cout << fixed << showpolnt << setprecision(2);
cout =< "The total sales for the company are: 5";
cout << totalSales << endl;

return 0O;

Copyright © 2012 Pearson Education, Inc.

Program Output with Example Input Shown in Bold
This program will calculate the total sales of

all the company's divisions.
Enter the following sales data:

Division
Division
Division
Division

Division
Division
Division
Division

Division
Division
Division
Division

The total sales for the company are:

I Sy

=

[T P T LS T L
-

=

=

=

=

=

=

=

=

=

=

Junarter
Juarter
Junarter
Junarter

Junarter
Juarter
Junarter
Junarter

Junarter
Juarter
Junarter
Juarter

Copyright © 2012 Pearson Education, Inc.

l:
21
3
4 g

531569.45 [Enter]
529654.23 [Enter]
532982.54 [Enter]
539651.21 [Enter]

$56321.02 [Enter]
554128.63 [Enter]
541235.85 [Enter]
$54652.33 [Enter]

$29654.35 [Enter]
$28963.32 [Enter]
$25353.55 [Enter]

: $532615.88 [Enter]

p456722.34

7-57

2D Array Initialization

« Two-dimensional arrays are initialized row-by-row:
const i1nt ROWS = 2, COLS = 2;
int exams[ROWS] [COLS] = { {84, 78},

{92, 97} };

84 |78

92 | 97

e Can omitinner { }, some Iinitial values in a row —
array elements without initial values will be set to 0
or NULL

Copyright © 2012 Pearson Education, Inc.

Two-Dimensional Array as
Parameter, Argument

« Use array name as argument in function call:
getExams (exams, 2);

 Use empty [] for row, size declarator for column in

prototype, header:
const int COLS = 2;

// Prototype
vold getExams (int [] [COLS], 1int);

// Header
vold getExams (1int exams|[] [COLS], 1nt rows)

Copyright © 2012 Pearson Education, Inc.

40
4]

43
44
45
46
47

Example — The showArray
Function from Program 7-19

fft**t*t*t*t**t*t*t*tt*t*t*t**t*t*t*tt*t*t*t*tt*t*t*t**t*t*t*tt*t*t

// Function Definition for showArray *
/f{ The first argument is a two-dimensional int array with COLS *
/¢4 columns. The second argument, rows, specifies the number of *

// rows in the array. The function displays the array's contents. *
ff##########i#t#####t#####itit###it#t###ititit##t#tit#ttit#t*tt#t#t

volid showArray(int array|[][COLS], int rows)

1
for (int x = 0; % < rows; X-++)
{
for (int y = 0; y < COLS; y++)
{
cout << setw(4) << array[x][y] << " ";
h
cout << endl:
h
t

Copyright © 2012 Pearson Education, Inc.

How showArray IS Called

int tablel[TBL1 ROWS][COLS]

{141, 2, 2, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}};
{{10, 20, 30, 40},

{50, &0, 70, B8O},

{90, 100, 110, 120},
{130, 140, 150, 1&60}};

int table2[TBL2 ROWS][COLS]

cout << "The contents of tablel are:\n";
showArray(tablel, TEL1 ROWS);

cout << "The contents of table2 are:\n";
showArray(tablez, TBELZ ROWS);

Copyright © 2012 Pearson Education, Inc.

Summing All the Elements In a
Two-Dimensional Array
* Glven the following definitions:

const int NUM ROWS
const int NUM COLS

5; // Number of rows
5; // Number of columns

int total = 0; // Accumulator
int numbers[NUM ROWS] [NUM COLS] =

{{2, 7, 9, o, 4},

{e, 1, 8, 9, 4},

{4, 3, 7, 2, 9},

{9, 9, 0, 3, 1},

{e, 2, 7, 4, 1}};

Copyright © 2012 Pearson Education, Inc.

Summing All the Elements In a
Two-Dimensional Array

// Sum the array elements.
for (int row = 0; row < NUM ROWS; row++)

{
for (int col = 0; col < NUM COLS; col++)

total += numbers|[row] [col];

}

// Display the sum.
cout << "The total 1s " << total << endl;

Copyright © 2012 Pearson Education, Inc.

Summing the Rows of a

Two-Dimensional Array
* Glven the following definitions:

const int NUM STUDENTS = 3;

const int NUM SCORES = 5;

double total; // Accumulator

double average; // To hold average scores

double scores[NUM STUDENTS] [NUM SCORES] =
{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},

{82, 73, 77, 82, 89}};

Copyright © 2012 Pearson Education, Inc.

Summing the Rows of a
Two-Dimensional Array

// Get each student's average score.
for (int row = 0; row < NUM STUDENTS; rowt+)
{

// Set the accumulator.

total = 0O;

// Sum a row.

for (int col = 0; col < NUM SCORES; col++)

total += scores[row] [col];

// Get the average

average = total / NUM SCORES;

// Display the average.

cout << "Score average for student "

<< (row + 1) << " 1s " << average <<endl;

Copyright © 2012 Pearson Education, Inc.

Summing the Columns of a

Two-Dimensional Array
* Glven the following definitions:

const int NUM STUDENTS = 3;

const int NUM SCORES = 5;

double total; // Accumulator

double average; // To hold average scores

double scores[NUM STUDENTS] [NUM SCORES] =
{{88, 97, 79, 86, 94},
{86, 91, 78, 79, 84},

{82, 73, 77, 82, 89}};

Copyright © 2012 Pearson Education, Inc.

Summing the Columns of a
Two-Dimensional Array

// Get the class average for each score.
for (int col = 0; col < NUM SCORES; col++)
{
// Reset the accumulator.
total = 0;
// Sum a column
for (int row = 0; row < NUM STUDENTS; rowt+)
total += scores[row] [col];
// Get the average
average = total / NUM STUDENTS;
// Display the class average.
cout << "Class average for test " << (col + 1)

<< " 1s " << average << endl;

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
-
; n 9 TONY GADDIS

Arrays with Three or More
Dimensions

seventh edition

Copyright © 2012 Pearson Education, Inc.

Arrays with Three or More
Dimensions

« Can define arrays with any number of
dimensions:
short rectSolid[2][3][5];
double timeGrid[3]1[4]1I[3]11[4];

 When used as parameter, specify all but
15t dimension in prototype, heading:
vold getRectSolid(short [][3]1[5]);

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
; [| 1 1 TONY GADDIS

Introduction to the STL vector

seventh edition

Copyright © 2012 Pearson Education, Inc.

Introduction to the STL vector

A data type defined in the Standard
Template Library (covered more in Chapter
16)

Can hold values of any type:

vector<int> scores;

Automatically adds space as more Is
needed — no need to determine size at
definition

Can use [] to access elements

Copyright © 2012 Pearson Education, Inc.

Declaring Vectors

You must #include<vector>

Declare a vector to hold int element:
vector<int> scores;

Declare a vector with nitial size 30:
vector<int> scores (30) ;

Declare a vector and initialize all elements to O:
vector<int> scores (30, 0);

Declare a vector initialized to size and contents
of another vector:

vector<int> finals(scores):;

Copyright © 2012 Pearson Education, Inc.

Adding Elements to a Vector

* Use push back member function to add

element to a full array or to an array that
had no defined size:
scores.push back(75);

e Use size member function to determine
size of a vector:

howbi1g = scores.size();

Copyright © 2012 Pearson Education, Inc.

Removing Vector Elements

* Use pop back member function to remove last
element from vector:
scores.pop back()

« To remove all contents of vector, use clear
member function:
scores.clear () ;

* To determine if vector is empty, use empty
member function:
while (!scores.empty())

Copyright © 2012 Pearson Education, Inc.

Other Useful Member Functions

Member Description Example

Function

at (elt) Returns the value of the element at | cout <<
position e1t in the vector vecl.at (i) ;

capacity () Returns the maximum number of maxelts =

elements a vector can store without | vecl.capacity();
allocating more memory

reverse () Reverse the order of the elements | vecl.reverse () ;
in a vector
resize Add elements to a vector, vecl.resize (5,0);
(elts,val) |optionally initializes them
swap (vec2) | Exchange the contents of two vecl.swap (vec2) ;
vectors

Copyright © 2012 Pearson Education, Inc.

