Chapter 14;

C++

From Control Structures
through Obijects

STARTING OUT WITH

seventh edition

More About
Classes

TONY GADDIS

Addison-Wesley
is an imprint of

HFVSTOLN M Copyright © 2012 Pearson Education, Inc.
B

From Control Structures
through Objects

seventh edition

TONY GADDIS

Instance and Static Members

Copyright © 2012 Pearson Education, Inc.

Instance and Static Members

e |nstance variable: a member variable in a class.
Each object has its own copy.

« static variable: one variable shared among all
objects of a class

e static member function: can be used to
access static member variable; can be called
before any objects are defined

Copyright © 2012 Pearson Education, Inc.

static member variable

Contents of Tree . h
Static member declared here.

1 // Tree class

2 class Tree

3

4 private:

5 static int objectCount; // Static member variable.
6 public:

7 // Constructor

8 Tree ()

9 { objectCount++; }
10
11 // Accessor function for objectCount
12 int getObjectCount () const
13 { return objectCount; } Static member defined here.

14 };
15
16 // Definition of the static member variable, written

17 // outside the class.
18 1nt Tree::objectCount = 0;

Copyright © 2012 Pearson Education, Inc.

Program 14-1

// This program demonstrates a static member variable.
tinclude <iostreams>

tinclude "Tree.h"

using namespace std;

int mainf()
1
// Define three Tree ocbjects.
Tres oak;
Tree =1m:
Tree pine;

// Display the number of Tree objects we have.
cout << "We have " << pine.getObjectCount/|)

<< " trees in our program!in";
return 0:

h

Program Output
We have 3 trees in our program!

Copyright © 2012 Pearson Education, Inc.

Three Instances of the Tree Class, But Only
One objectCount Variable

objectCount variable

(static)
3
/ B \
oak elm pine

Instances of the Tree class

Copyright © 2012 Pearson Education, Inc.

static member function

Declared with static before return type:

static 1nt getObjectCount () const
{ return objectCount; }

Static member functions can only access static
member data

Can be called independent of objects:

int num = Tree::getObjectCount ()

Copyright © 2012 Pearson Education, Inc.

Modified Version of Tree.h

O J o U b W N

O

10
11
12
13
14
15
16
17
18

// Tree class
class Tree
{
private:

static int objectCount; // Static member variable.
public:

// Constructor

Tree ()

{ objectCount++; }

// Accessor function for objectCount
static int getObjectCount () const
{ return objectCount; }

Iz

// Definition of the static member variable, written
// outside the class.
int Tree::objectCount = 0;

Now we can call the function like this:
cout << "There are " << Tree::getObjectCount ()

<< " objects.\n";

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
1 I [2 TONY GADDIS

seventh edition

Friends of Classes

Copyright © 2012 Pearson Education, Inc.

Friends of Classes

 Friend: a function or class that is not a member
of a class, but has access to private members of
the class

A friend function can be a stand-alone function
or a member function of another class

 Itis declared a friend of a class with friend
keyword in the function prototype

Copyright © 2012 Pearson Education, Inc.

friend Function Declarations

« Stand-alone function:
friend void setAVal (1ntValé&, 1int);
// declares setAVal function to be
// a friend of this class

 Member function of another class:
friend void SomeClass::setNum(int num)
// setNum function from SomeClass
// class 1s a friend of this class

Copyright © 2012 Pearson Education, Inc.

friend Class Declarations

Class as a friend of a class:
class FriendClass

{

Y

class NewClass

{
public:
friend class FriendClass; // declares
// entire class FriendClass as a friend
// of this class

b e

Copyright © 2012 Pearson Education, Inc.

‘ S STARTINGOUTWITH -+

From Control Structures
through Objects

seventh edition

TONY GADDIS

Memberwise Assignment

Copyright © 2012 Pearson Education, Inc.

Memberwise Assignment

« Can use = to assign one object to another, or to
initialize an object with an object’s data

* Copies member to member. e.g.,
instance? = instancel; means:

copy all member values from instancel and assign

to the corresponding member variables of
instance?Z

« Use at Initialization:
Rectangle r2 = rl;

Copyright © 2012 Pearson Education, Inc.

Program 14-5

{/ This program demonstrates memberwlise assignment.
tinclude <icstream=>

tinclude "Rectangle.h"

using namespace std;

int main{)

{
{// Define two Rectangle objects.
Rectangle boxl(10.0, 10.0); J/ width = 10.0, length =
Rectangle box2 (20.0, 20.0); // width = 20.0, length =
/f Display each cbject's width and length.
cout << "boxl's width and length: " << boxl.getWidthi)
=< " " << boxl.getLength() << endl;
cout =< "box2's width and length: " =< box2.getWidthi)
<< " " << hox2.getlLength() << endl << endl;
/f Assign the members of boxl to boxZ.
box2 = bhoxl;
/¢ Display each cbject's width and length again.
cout =< "boxl's width and length: " =< boxl.getWidthi)
=< " " << boxl.getLength() << endl;
cout << "box2's width and length: " << box2.getWidthi()
=< " " «= box2.getLength() =< endl;
return 0O:
L

Copyright © 2012 Pearson Education, Inc.

Program 14-5 (continued)

Program Output
boxl's width and length:
box2's width and length:

boxl's width and length:
box2's width and length:

Copyright © 2012 Pearson Education, Inc.

10 10
20 20

10 10
10 10

Copyright © 2012 Pearson Education, Inc.

Copy Constructors

STARTING OUT WITH ‘ -+

From Control Structures
through Objects

seventh edition

TONY GADDIS

Copy Constructors

« Special constructor used when a newly created
object is initialized to the data of another object
of same class

« Default copy constructor copies field-to-field

« Default copy constructor works fine in many
cases

Copyright © 2012 Pearson Education, Inc.

Copy Constructors

Problem: what Iif object contains a pointer?

class SomeClass

{ public:
SomeClass (int val = 0)
{value=new 1nt; *value = val;}
int getVal () ;
vold setVal (1nt);
private:
int *value;

Copyright © 2012 Pearson Education, Inc.

Copy Constructors

What we get using memberwise copy with

objects containing dynamic memory:
SomeClass objectl (5);
SomeClass object2 = objectl;
objectZ2.setVal (13);
cout << objectl.getVal(); // also 13

objectl

13

object?

value
q

/\

\\\\Yalue

Copyright © 2012 Pearson Education, Inc.

Programmer-Defined
Copy Constructor

» Allows us to solve problem with objects
containing pointers:

SomeClass::SomeClass (const SomeClass &obj)

{

value = new 1nt;
*value = obj.value;

J

» Copy constructor takes a reference
parameter to an object of the class

Copyright © 2012 Pearson Education, Inc.

Programmer-Defined

Copy Constructor

« Each object now points to separate

dynamic memory:

SomeClass objectl (5);

SomeClass objectZ2 = objectl;
objectZ2.setVal (13);

cout << objectl.getVal(); // still 5

5 13

objectl object?2
valus value

V1 V1

Copyright © 2012 Pearson Education, Inc.

Programmer-Defined
Copy Constructor

* Since copy constructor has a reference to
the object it Is copying from,
SomeClass::SomeClass (SomeClass &obj)

it can modify that object.

* To prevent this from happening, make the
object parameter const:

SomeClass: :SomeClass
(const SomeClass &ob7j)

Copyright © 2012 Pearson Education, Inc.

Contents of StudentTestScores.h (Version 2)

#ifndef STUDENTTESTSCORES H
#define STUDENTTESTSCORES H
#include <string>

using namespace std;

const double DEFAULT SCORE = 0.0;

class StudentTestScores

{

private:
string studentName; // The student's name
double *testScores; // Points to array of test scores
int numTestScores: // Number of test scores

// Private member function to create an
// array of test scores.
void createTestScoresArray(int size)
{ numTestScores = size;
testScores = new double[size];
for (int 1 = 0; 1 < size; i++)
testScores[1] = DEFAULT SCORE; }

public:
// Constructor
StudentTestScores(string name, int numScores)
{ studentName = name;

Copyright © 2012 Pearson Education, Inc.

createTestScoresArray(numScores); }

// Copy constructor
StudentTestScores(const StudentTestScores &obj)
{ studentName = obj.studentName;
numTestScores = obj.numTestScores;
testScores = new double[numTestScores]:
for (int 1 = 0; i < numTestScores; i++)
testScores[1] = obj.testScores[i]; }

// Destructor
~StudentTestScores()
{ delete [] testScores; }

// The setTestScore function sets a specific
// test score's value.

void setTestScore(double score, int index)

{ testScores[index] = score; }

// Sset the student's name.
void setStudentName(string name)
{ studentName = name; }

// Get the student's name.

string getStudentName() const
{ return studentName; }

Copyright © 2012 Pearson Education, Inc.

// Get the number of test scores.
int getNumTestScores() const
{ return numTestScores; }

// Get a specific test score.
double getTestScore(int index) const
{ return testScores[index]; }
i
fendif

Copyright © 2012 Pearson Education, Inc.

‘ S STARTINGOUTWITH -+

From Control Structures
through Objects

seventh edition

TONY GADDIS

Operator Overloading

Copyright © 2012 Pearson Education, Inc.

Operator Overloading

Operators such as =, +, and others can be redefined when
used with objects of a class

The name of the function for the overloaded operator Is
operator followed by the operator symbol, e.qg.,
operator+ to overload the + operator, and
operator= to overload the = operator

Prototype for the overloaded operator goes in the
declaration of the class that is overloading it

Overloaded operator function definition goes with other
member functions

Copyright © 2012 Pearson Education, Inc.

Operator Overloading

* Prototype:
vold operator=(const SomeClass &rval)

N o~ _
e "

_ parameter for
return function object on right
type name side of operator

« Operator Is called via object on left side

Copyright © 2012 Pearson Education, Inc.

Invoking an Overloaded
Operator

» Operator can be invoked as a member

function:
objectl.operator=(object?);

e |t can also be used in more conventional

manner:
objectl = object2;

Copyright © 2012 Pearson Education, Inc.

Returning a Value

* Overloaded operator can return a value

class Pointzd

{
public:
double operator-(const point2d &right)
{ return sqgrt (pow((x-right.x),2)
+ pow ((y-right.y),2)); }

private:
int x, y;
I
Point2d pointl (2,2), point2(4,4);
// Compute and display distance between 2 points.
cout << point2 — pointl << endl; // displays 2.82843

Copyright © 2012 Pearson Education, Inc.

Returning a Value

* Return type the same as the left operand
supports notation like:

objectl = objectZ2 = object3;
 Function declared as follows:

const SomeClass operator=(const someClass &rval)

* In function, include as last statement:

return *this;

Copyright © 2012 Pearson Education, Inc.

The this Pointer

« this: predefined pointer available to a
class’'s member functions

» Always points to the instance (object) of
the class whose function is being called

* |s passed as a hidden argument to all non-
static member functions

* Can be used to access members that may
be hidden by parameters with same name

Copyright © 2012 Pearson Education, Inc.

this Pointer Example

class SomeClass
{
private:
int num;
public:
vold setNum(int num)

{ this->num = num; }

g

Copyright © 2012 Pearson Education, Inc.

Notes on
Overloaded Operators

« Can change meaning of an operator

« Cannot change the number of operands of
the operator

* Only certain operators can be overloaded.
Cannot overload the following operators:

? . L x :: sizeof

Copyright © 2012 Pearson Education, Inc.

Overloading Types of Operators

« ++, —— operators overloaded differently for
prefix vs. postfix notation

* Overloaded relational operators should
return a bool value

* Overloaded stream operators >>, << must
return reference to istream, ostream
objects and take istream, ostream
objects as parameters

Copyright © 2012 Pearson Education, Inc.

Overloaded [] Operator

« Can create classes that behave like arrays,
provide bounds-checking on subscripts

 Must consider constructor, destructor

 Overloaded [] returns a reference to
object, not an object itself

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
1 I | 6 TONY GADDIS

seventh edition

Object Conversion

Copyright © 2012 Pearson Education, Inc.

Object Conversion

« Type of an object can be converted to another type
« Automatically done for built-in data types
« Must write an operator function to perform conversion

 To convert an FeetInches objectto an int:

FeetInches: :operator int ()
{return feet;}

« Assuming distance is a Feet Inches object, allows
statements like:
int d = distance;

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

14.7

Aggregation

STARTING OUT WITH ‘ -+

From Control Structures
through Objects

seventh edition

TONY GADDIS

Aggregation

 Agdareqgation: a class is a member of a
class

* Supports the modeling of ‘has a’
relationship between classes — enclosing
class ‘has a’ enclosed class

e Same notation as for structures within
structures

Copyright © 2012 Pearson Education, Inc.

Aggregation

class StudentInfo
{

private:
string firstName, LastName;
string address, city, state, zip;

};

class Student

{

private:
StudentInfo personalData;

s

Copyright © 2012 Pearson Education, Inc.

See the Instructor, TextBook,
and Course classes in Chapter 14.

Course

- courseName : char []
- instructor : Instructor
- textBook : TextBook

+ Course(name : char *, instr : &Instructor,
text : &TextBook) :
+ print() : void

Instructor TextBook
- lastName : char [] - title :Char (]
- firstName : char [] - author : char []
- publisher : char []

- officeNumber : char []

+ TextBook(textTitle : char *, auth : char *,
pub : char *) :
+ TextBook(obj : &TextBook) :
+ set(textTitle : char *, auth : char *,
pub : char *) : void
+ print() : void

+ Instructor(lname : char *, fname : char *,
office : char *) :
+ Instructor(obj : &Instructor) :
+ set(lname : char *, fname : char *,
office : char *) : void
+ print() : void

Copyright © 2012 Pearson Education, Inc.

