Chapter 15;

From Control Structures
through Obijects

seventh edition

Inheritance,
Polymorphism,
and Virtual
Functions

TONY GADDIS

Addison-Wesley
is an imprint of

HFVSTOLN M Copyright © 2012 Pearson Education, Inc.
B

STARTING OUT WITH ‘ e

From Control Structures
through Objects

seventh edition

TONY GADDIS

What Is Inheritance?

Copyright © 2012 Pearson Education, Inc.

What Is Inheritance?

* Provides a way to create a new class from
an existing class

* The new class is a specialized version of
the existing class

Copyright © 2012 Pearson Education, Inc.

Example: Insects

All insects have
Insect certain characteristics.

In addition to the common In addition to the common
insect characteristics, the insect characteristics, the
bumble bee has its own unique grasshopper has its own unique
characteristics such as the characteristics such as the
ability to sting. ability to jump.

Copyright © 2012 Pearson Education, Inc.

The "Is a" Relationship

* Inheritance establishes an "is a"
relationship between classes.
— A poodle is a dog
— A car is a vehicle
— A flower is a plant
— A football player is an athlete

Copyright © 2012 Pearson Education, Inc.

Inheritance — Terminology and
Notation

« Base class (or parent) — inherited from
« Derived class (or child) — inherits from the base class

 Notation:
class Student // base class

{

I
class UnderGrad : public student

{ // derived class

b

Copyright © 2012 Pearson Education, Inc.

Back to the ‘is a’ Relationship

* An object of a derived class 'is a(n)' object of
the base class

« Example:
— an UnderGrad IS a Student

— aMammal IS an Animal

« A derived object has all of the characteristics of
the base class

Copyright © 2012 Pearson Education, Inc.

What Does a Child Have?

An object of the derived class has:
* all members defined in child class
* all members declared in parent class

An object of the derived class can use:
 all public members defined in child class

* all public members defined in parent
class

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
1 5 [2 TONY GADDIS

Protected Members and Class
AcCcess

Copyright © 2012 Pearson Education, Inc.

Protected Members and

Class Access

« protected member access specification:
like private, but accessible by objects of

derived class

» Class access specification: determines
how private, protected, and public
members of base class are inherited by
the derived class

Copyright © 2012 Pearson Education, Inc.

Class Access Specifiers

1) public — object of derived class can be
treated as object of base class (not vice-
versa)

2) protected — more restrictive than public,
but allows derived classes to know details of
parents

3) private — prevents objects of derived class
from being treated as objects of base class.

Copyright © 2012 Pearson Education, Inc.

Inheritance vs. Access

How inherited base class

members
Base class members appear in derived class
private: x bpagzvcaigss x is inaccessible
protected: vy " private: y
public: z private: z
private: x protected % is inaccessible
protected: y base class » protected: y
public: z protected: z
private: x public x IS Inaccessible
protected: y base class » protected: y
public: z public: z

Copyright © 2012 Pearson Education, Inc.

More Inheritance vs. Access

class Grade class Test : public Grade

private members: private members:

char letter; int numQuestions;

float score; float pointsEach;

void calcGrade () ; int numMissed;
public members: public members:

vold setScore (float); Test (int, int);

float getScore();

char getletter () ;

private members:
int numQuestions:

When Test class inherits float pointsEach;
from Grade class using int numMissed;
public class access, it public members:

Test (int, int);

volid setScore (float);
float getScore ()
float getLetter();

v

looks like this:

Copyright © 2012 Pearson Education, Inc.

More Inheritance vs. Access (2)

class Grade

private members:
char letter;
float score;
volid calcGrade() ;
public members:
volid setScore (float);
float getScore();
char getletter () ;

When Test class inherits
from Grade class using
protected class access, it

class Test : protected Grade

private members:
int numQuestions;
float pointsEach;
int numMissed;
public members:
Test (int, int);

looks like this:

Copyright © 2012 Pearson Education, Inc.

v

private members:
int numQuestions:
float pointsEach;
int numMissed;
public members:
Test (int, int);
protected members:
void setScore(float);
float getScore ()
float getLetter();

More Inheritance vs. Access (3)

class Grade class Test : private Grade

private members: private members:

char letter; int numQuestions;

float score; float pointsEach;

void calcGrade () ; int numMissed;
public members: public members:

vold setScore (float); Test (int, int);

float getScore();

char getletter () ;

private members:
_ _ int numQuestions:
When Test class inherits float pointsEach;

from Grade class using int numMissed;

, : vold setScore (float);
Ipr?(valtlte clfas.,s access, it float getScore () ;
ooks like this: float getlLetter();
public members:

Test (int, int);

v

Copyright © 2012 Pearson Education, Inc.

Constructors and Destructors In
Base and Derived Classes

Copyright © 2012 Pearson Education, Inc.

Constructors and Destructors In
Base and Derived Classes

 Derived classes can have their own
constructors and destructors

* When an object of a derived class Is
created, the base class’s constructor is
executed first, followed by the derived
class’s constructor

 When an object of a derived class Is
destroyed, its destructor is called first, then
that of the base class

Copyright © 2012 Pearson Education, Inc.

Constructors and Destructors In
Base and Derived Classes

Program 15-4

g =

// This program demonstrates the order in which base and

2 J/ derived class constructors and destructors are called.
tinclude <iocstream:

1 using namespace std;

E

ffttttttititittititittitttitttttti

// BaselClass declaration *
ffttttttitttittitttittitttitttttti

Copyright © 2012 Pearson Education, Inc.

Program 15-4 {continued)

class Basellass

{
public:
BaseClass() // Constructor
{ cout << "This is the BaseClass constructor.in": }
~BaseClass() // Destructor
{ cout =< "This is the BaseClass destructor.‘n";
} i

S FEEFd kb ek hkFd kb kh bk bk kb kb kR Ak E R

Jf DerivedClass declaraticon *
l.-".,."********************************

class DerivedClass : public BaseClass

{
public:
DerivedClass({) // Constructor
{ cout =< "This is the DerivedClass constructor.'n": }
~DerivedClass() // Destructor
{ cout =< "This is the DeriwvedClass destructor.hn"; }
bi

Copyright © 2012 Pearson Education, Inc.

Program 5-14 (Continued)

e SRt s R Rttt bt Rt Rt bt Rt Rl

// main function *
;'_f********************************

int maini)
{

cout << "We will now define a DerivedClass object.\n";
DerivedClass object;

cout << "The program is now going to end.\n";
return 0;

Program Output

We will now define a DerivedClass object.
This is the BaseClass constructor.

This is the DerivedClass constructor.

The program is now going to end.

This is the DerivedClass destructor.
This is the BaseClass destructor.

Copyright © 2012 Pearson Education, Inc.

Passing Arguments to
Base Class Constructor

* Allows selection between multiple base
class constructors

« Specify arguments to base constructor on
derived constructor heading:

Square: :Square (1nt side)
Rectangle (s1de, side)

« Can also be done with inline constructors

* Must be done If base class has no default
constructor

Copyright © 2012 Pearson Education, Inc.

Passing Arguments to
Base Class Constructor

derived class constructor base class constructor

/\ /\

o N 7
Square: :Square (1nt

side) :Rectangre(stde, side) —_—

derived constructor base constructor
parameter parameters

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
1 5 [I TONY GADDIS

seventh edition

Redefining Base Class Functions

Copyright © 2012 Pearson Education, Inc.

Redefining Base Class
Functions

 Redefining function: function in a derived
class that has the same name and
parameter list as a function in the base

class

* Typically used to replace a function in base
class with different actions in derived class

Copyright © 2012 Pearson Education, Inc.

Redefining Base Class

Functions

* Not the same as overloading — with
overloading, parameter lists must be
different

* ODbjects of base class use base class
version of function; objects of derived
class use derived class version of function

Copyright © 2012 Pearson Education, Inc.

Base Class

class GradedActivity

{
protected:
char letter; // To hold the letter grade
double score: // To hold the numeric score
vold determineGrade(); // Determines the letter grade
public:
// Default constructor
GradedActivity()
{ letter = " ': score = 0.0: }

// Mutator function)
void setScore(double s) «—— NOt€ setScore function

{ score = s5;
determineGrade();}

!/ Accessor functions
double getScore() const

{ return score; }

char getletterGrade() const
{ return letter; }

Copyright © 2012 Pearson Education, Inc.

15-26

Derived Class

tifndef CURVEDACTIVITY H

tdefine CURVEDACTIVITY H

tinclude "GradedBctivity.h"

class CurvedActivity : public GradedActivity
{
protected:

double rawScore: £ Unadjusted score

double percentage; {// Curve percentage
public:

// Default constructor

Curveddctivity() : Gradedlctivity()

{ rawscore = 0.0; percentage = 0.0; }

// Mutator functions

void setScore(double s)<+— Redefined setScore function

{ rawscore = 5;
GradedActivity::setScore(rawsScore * percentage); }

vold setPercentage(double c)
{ percentage = c; }

/f Accessor functions
double getPercentage() const
{ return percentage; }

double getRawScore() const
{ return rawsScore; }

¥
tendif

15-27
Copyright © 2012 Pearson Education, Inc.

From Program 15-7

// Define a CurvedActivity object.
Curvedictivity exam;

// Get the unadjusted score.
cout << "Enter the student's raw numeric score: ";
cin »> numericScore;

// Get the curve percentage.
cout << "Enter the curve percentage for this student: ";
cin => percentage;

// Bend the wvalues to the exam cobject.
exam.setPercentage (percentage) ;
exam.setScore(numericScore);

// Display the grade data.
cout << fixed << setprecision(2);
cout << "The raw score is "
<< eXxam.JetRawScore() << endl;
cout << "The curved score is "
<< eXam.JetsScore() << endl;
cout << "The curved grade is "
<< eXam.getlLetterGrade() << endl;

Program Output with Example Input Shown in Bold

Enter the student's raw numeric score: 87 [Enter]

Enter the curve percentage for this student: 1.06 [Enter]
The raw score is 87.00

The curved score is 92.22

The curved grade is A

Copyright © 2012 Pearson Education, Inc.

Problem with Redefining

e Consider this situation:

— Class BaseClass defines functions x () and v ().
x () calls vy ().

— Class DerivedClass Inherits from BaseClass and
redefines function y ().

— An object D of class DerivedClass Is created and
function x () Is called.

— When x () is called, which v () is used, the one
defined iIn BaseClass or the the redefined one In
DerivedClass?

Copyright © 2012 Pearson Education, Inc.

Problem with Redefining

BaseClass

void X(); Object D invokes function X ()

void Y () In BaseClass. Function X ()
invokes function Y () in BaseClass, not

DerivedClass function Y () | INn DerivedClass,
because function calls are bound at
compile time. This is static
binding.

void Y () ;

DerivedClass D;
D.X();

P
<

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
1 5 [5 TONY GADDIS

Class Hierarchies

seventh edition

Copyright © 2012 Pearson Education, Inc.

Class Hierarchies

A base class can be derived from another
base class.

ClassA

£\

ClassB

I

ClassC

Copyright © 2012 Pearson Education, Inc.

Class Hierarchies

« Consider the GradedActivity, FinalExam,
PassFailActivity, PassFailExam hierarchy in
Chapter 15.

GradedActivity

AN

FinalExam PassFailActivity

N

PassFailExam

Copyright © 2012 Pearson Education, Inc.

| STARTING OUT WITH ‘ e

From Control Structures

.,_A_
1 5 6 =
[TONY GADDIS

Polymorphism and Virtual
Member Functions

Copyright © 2012 Pearson Education, Inc.

Polymorphism and
Virtual Member Functions

* Virtual member function: function in base class
that expects to be redefined in derived class

* Function defined with key word virtual:
virtual void Y () {...}

 Supports dynamic binding: functions bound at
run time to function that they call

* Without virtual member functions, C++ uses
static (compile time) binding

Copyright © 2012 Pearson Education, Inc.

Consider this function (from Program 15-9)

vold displavGrade (const GradedActivity &activity)

1
cout << setprecision(l) << fixed;
cout << "The activity's numeric score is "
<< activity.getScore() << endl;
cout << "The activity's letter grade is "
<< activity.getletterGrade() << endl;
t

Because the parameter in the displayGrade function is a GradedActivity
reference variable, it can reference any object that is derived from
GradedActivity. That means we can pass a GradedActivity object, a
FinalExam object, a PassFailExam object, or any other object that is
derived from GradedActivity.

A problem occurs in Program 15-10 however...

Copyright © 2012 Pearson Education, Inc.

Program 15-10

#include <iostream>

$#include <iomanip>

#include "PassFailActivity.h"
using namespace std;

// Function prototype
void displayGrade(const GradedActivity &);

int main()

{
// Create a PassFaillActivity object. Minimum passing
// score is 70.
PassFailActivity test(70);

// Set the score to 72.
test.setScore(72);

// Display the object's grade data. The letter grade
// should be 'P'. What will be displayed?
displayGrade(test);

return 0;

15-37
Copyright © 2012 Pearson Education, Inc.

II,-"J,J"J:"J:"Jc":':"i"Jc"J:"Jc":k":'-:":k"J:"!c":':":k":':"k"J:"J:":k":'c:"!c"J:"J:"ﬂ:":k":'-:"J:"Jc":':":k'******'J:"Jc'************************

// The displayGrade function displays a GradedActivity object's *

// numeric score and letter grade. *
ff**********************'ic"k“i";':"ﬂ:";\'r'ir';':":.'r******'ﬂ:‘*************************

vold displavGradel(const GradedActivitv &activitv)

{

cout << setprecision(l) << fixed;

cout << "The activity's numeric score is "
<< activity.getScore() << endl;

cout << "The activity's letter grade is "
<< activity.getLetterGrade() << endl;

}

Program Output

The activity's numeric score is 72.0
The activity's letter grade is C

As you can see from the example output, the getLetterGrade member

function returned ‘C’ instead of ‘P’. This is because the GradedActivity
class’s getLetterGrade function was executed instead of the

PassFailActivity class’s version of the function.

Copyright © 2012 Pearson Education, Inc.

Static Binding

* Program 15-10 displays 'C' instead of 'P'
because the call to the getLetterGrade

function Is statically bound (at compile
time) with the GradedActivity class's
version of the function.

* We can remedy this by making the
function virtual.

Copyright © 2012 Pearson Education, Inc.

Virtual Functions

A virtual function is dynamically bound to
calls at runtime.

* At runtime, C++ determines the type of
object making the call, and binds the
function to the appropriate version of the
function.

Copyright © 2012 Pearson Education, Inc.

Virtual Functions

 To make a function virtual, place the
virtual key word before the return type In
the base class's declaration:

virtual char getLetterGrade () const;

* The compiler will not bind the function to
calls. Instead, the program will bind them
at runtime.

Copyright © 2012 Pearson Education, Inc.

Updated Version of GradedActivity

class GradedActivity
{

protected:

double score: // To hold the numeric score
public:

// Default constructor

GradedRActivity()

{ score = 0.0: }

// Constructor
GradedActivity(double =)
{ score = 33 }

// Mutator function
vold setScore({double s)

{ score = s; } The function
IS now virtual.

// BAccessor functions
double getscore() const

{ return score; The function also becomes

}_haf getletterGrade() const; virtual in all derived classes

automatically!

Copyright © 2012 Pearson Education, Inc.

If we recompile our program with the updated versions of the
classes, we will get the right output, shown here: (See Program
15-11 in the book.)

Program Output

The activity's numeric score is 72.0
The activity's letter grade is P

This type of behavior is known as polymorphism. The term
polymorphism means the ability to take many forms.

Program 15-12 demonstrates polymorphism by passing

objects of the GradedActivity and PassFailExam classes to the
displayGrade function.

Copyright © 2012 Pearson Education, Inc.

Program 15-12

#include <iostream>
$include <iomanip>
$include "PassFailExam.h"
using namespace std;

// Function prototype
vold displayGrade(const GradedActivity &);

int main()

{
// Create a GradedActivity object. The score is 88.
GradedActivity testl(88.0);

// Create a PassFailExam object. There are 100 questions,
// the student missed 25 of them, and the minimum passing
// score is 70.

PassFailExam test2(100, 25, 70.0);

// Display the grade data for both objects.

cout << "Test l:\n";

displayGrade(testl); // GradedActivity object
cout << "\nTest 2:\n";:

Copyright © 2012 Pearson Education, Inc.

displayGrade(test2); // PassFailExam object
return 0;

J.-"J,r‘*****'Jr****************'Jr**

// The displayGrade function displays a GradedActivity object's *

// numeric score and letter grade. *
J,r’!"Jr****'Jr***'!:".k'*********'k'*'Jr***'!:"Jr*********'Jr*************************

vold displayGrade(const GradedActivity &activity)

{
cout << setprecision(l) << fixed;
cout << "The activity's numeric score is "
<< activity.getScore() << endl;
cout << "The activity's letter grade is "
<< activity.getLetterGrade() << endl;
}

Program Output

Test 1:

The activity's numeric score is 88.0
The activity's letter grade is B

Test 2:

The activity's numeric score is 75.0
The activity's letter grade is P

Copyright © 2012 Pearson Education, Inc.

Polymorphism Requires
References or Pointers

* Polymorphic behavior is only possible
when an object is referenced by a

reference variable or a pointer, as
demonstrated in the displayGrade

function.

Copyright © 2012 Pearson Education, Inc.

Base Class Pointers

« Can define a pointer to a base class object

« Can assign It the address of a derived
class object

GradedActivity *exam = new PassFailExam{100, 25, 70.0);

cout << exXam->JgetsScore() << endl;
cout << exam->JetlLetterGrade () << endl;

Copyright © 2012 Pearson Education, Inc.

Base Class Pointers

* Base class pointers and references only know
about members of the base class

— S0, you can’t use a base class pointer to call a
derived class function

 Redefined functions in derived class will be

ignored unless base class declares the function
virtual

Copyright © 2012 Pearson Education, Inc.

Redefining vs. Overriding

* In C++, redefined functions are statically
bound and overridden functions are
dynamically bound.

e S0, a virtual function Is overridden, and a
non-virtual function is redefined.

Copyright © 2012 Pearson Education, Inc.

Virtual Destructors

* It's a good idea to make destructors virtual
If the class could ever become a base
class.

» Otherwise, the compiler will perform static
binding on the destructor If the class ever
IS derived from.

» See Program 15-14 for an example

Copyright © 2012 Pearson Education, Inc.

Abstract Base Classes and
Pure Virtual Functions

Copyright © 2012 Pearson Education, Inc.

Abstract Base Classes and
Pure Virtual Functions

 Pure virtual function: a virtual member function
that must be overridden in a derived class that
has objects

» Abstract base class contains at least one pure
virtual function:
virtual void Y () = 0;

 The = 0 Indicates a pure virtual function

« Must have no function definition Iin the base
class

Copyright © 2012 Pearson Education, Inc.

Abstract Base Classes and
Pure Virtual Functions
 Abstract base class: class that can have

no objects. Serves as a basis for derived
classes that may/will have objects

A class becomes an abstract base class
when one or more of its member
functions Is a pure virtual function

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
1 5 [| 8 TONY GADDIS

Multiple Inheritance

seventh edition

Copyright © 2012 Pearson Education, Inc.

Multiple Inheritance

. AI derived class can have more than one base
class

« Each base class can have its own access
specification in derived class's definition:

class cube : public square,
public rectSolid;

class class
square rectSolid

class
cube

Copyright © 2012 Pearson Education, Inc.

Multiple Inheritance

» Arguments can be passed to both base
classes' constructors:

cube: :cube (1nt side)
square (si1de),

rectSolid(side, side, side);
 Base class constructors are called in order
given In class declaration, not in order
used In class constructor

Copyright © 2012 Pearson Education, Inc.

Multiple Inheritance

* Problem: what if base classes have member
variables/functions with the same name?

e Solutions:
— Derived class redefines the multiply-defined function

— Derived class invokes member function in a particular
base class using scope resolution operator : :

« Compiler errors occur if derived class uses base
class function without one of these solutions

Copyright © 2012 Pearson Education, Inc.

