STARTING OUT WITH

Chapter 16;

C++

From Control Structures
through Obijects

seventh edition

Exceptions,
Templates, and
the Standard
Template Library
(STL)

TONY GADDIS

Addison-Wesley
is an imprint of

HFVSTOLN M Copyright © 2012 Pearson Education, Inc.
B

STARTING OUT WITH ‘ -+

From Control Structures

through Objects
.
6 [| 1 TONY GADDIS

Exceptions

seventh edition

Copyright © 2012 Pearson Education, Inc.

Exceptions

* Indicate that something unexpected has
occurred or been detected

 Allow program to deal with the problem in
a controlled manner

« Can be as simple or complex as program
design requires

Copyright © 2012 Pearson Education, Inc.

Exceptions - Terminology

« EXception: object or value that signals an
error

* Throw an exception: send a signal that an
error has occurred

« Catch/Handle an exception: process the
exception; interpret the signal

Copyright © 2012 Pearson Education, Inc.

Exceptions — Key Words

« throw — followed by an argument, is used to
throw an exception

« try — followed by a block { 1}, Is used to
Invoke code that throws an exception

« catch — followed by a block { 1}, Is used to

detect and process exceptions thrown Iin
preceding try block. Takes a parameter that
matches the type thrown.

Copyright © 2012 Pearson Education, Inc.

Exceptions — Flow of Control

1) A function that throws an exception is called from
within a try block

2) If the function throws an exception, the function
terminates and the try block is immediately exited. A
catch block to process the exception is searched for in
the source code immediately following the try block.

3) If a catch block is found that matches the exception
thrown, it is executed. If no catch block that matches
the exception Is found, the program terminates.

Copyright © 2012 Pearson Education, Inc.

Exceptions — Example (1)

// function that throws an exception
int totalDays(int days, 1nt weeks)
{
1f ((days < 0) || (days > 7))
throw "invalid number of days";
// the argument to throw is the
// character string
else
return (7 * weeks + days);

Copyright © 2012 Pearson Education, Inc.

Exceptions — Example (2)

try // block that calls function

{
totDays = totalDays (days, weeks);

cout << "Total days: " << days;
}

catch (char *msg) // interpret
// exception

cout << "Error: " << msg;

Copyright © 2012 Pearson Education, Inc.

Exceptions — What Happens

1) try blockis entered. totalDays function is
callec

2) If 1st parameter is between 0 and 7, total
number of days is returned and catch block is
skipped over (no exception thrown)

3) If exception is thrown, function and try block
are exited, catch blocks are scanned for 1%t

one that matches the data type of the thrown
exception. catch block executes

Copyright © 2012 Pearson Education, Inc.

From Program 16-1

int main()
{
int numl, numz2; // To hold two numbers
double quotient; // To hold the quotient of the numbers

J/ Get two numbers.
cout == "Enter two numbers:
cin »>» numl >> num2;

-

// Divide numl by num2 and catch any
// potential excepticns.
try
1
gquotient = divide(numl, num2);
cout << "The quotient is " << guotient << endl;

h

catch {char *exceptionString)

{

cout << exceptionString;

h

cout << "End of the program.i\n";
return O;

+
Copyright © 2012 Pearson Education, Inc.

From Program 16-1

S hhkkkkkdhhkhhhhhbhkdh kb b d bbbk bk kdkhhhhhhh kb v d

// The divide function divides numerator by *#*
// denominator. If denominator is zero, the *

// function throws an exXception. *
I.-"_,.-'1':'.*'.'r1'r1'r1'r1'rir'.'r1'.-'.'r'.'r1'r'.'r1'r'.'r1':'.*1'.-**#*#'.'r***#*#*#****#*#*#**

double divide(int numerator, int denominator)

{
if (denominator == 0)
throw "ERROR: Cannot divide by zero.\n";

return static cast<double>(numerator) / dencminator;

Program Output with Example Input Shown in Bold

Enter two numbers: 12 2 [Enter]
The quotient is 6
End of the program.

Program Output with Example Input Shown in Bold

Enter two numbers: 12 0 [Enter]
ERROR: Cannot divide by zero.
End of the program.

Copyright © 2012 Pearson Education, Inc.

What Happens in theTry/Catch
Construct

try
{

———» quotient = divide(numl, num2);

__then this statement —— cout << "The quotient is " << quotient << endl;

If this statement
throws an exception...

is skipped. Y
catch (char *exceptionString)
If the exception is a string, {
the program jumps to cout << exceptionString;
this catch clause. }

?ft.e:‘tr:je;‘atch DIocK 18 —» cout << "End of the program.\n";
Inisheq, the program return 0;

resumes here.

Copyright © 2012 Pearson Education, Inc.

What if no exception Is thrown?

try
{
quotient = divide(numl, num2);
cout << "The quotient is " << quotient << endl;
!
catch (char *exceptionString)
If no exception is thrown in the {
try block, the program jumps cout << exceptionString;
to the statement that immediately }
follows the try/catch construct.
—» cout << "End of the program.\n";

return 0;

Copyright © 2012 Pearson Education, Inc.

Exceptions - Notes

* Predefined functions such as new may
throw exceptions

 The value that is thrown does not need to
be used In catch block.
— In this case, no name Is needed In catch

parameter definition
— catch block parameter definition does need

the type of exception being caught

Copyright © 2012 Pearson Education, Inc.

Exception Not Caught?

* An exception will not be caught if
— It 1s thrown from outside of a trv block
—there Is no catch block that matches the data
type of the thrown exception

* If an exception is not caught, the program
will terminate

Copyright © 2012 Pearson Education, Inc.

Exceptions and Objects

* An exception class can be defined in a
class and thrown as an exception by a
member function

* An exception class may have:
— no members: used only to signal an error
— members: pass error data to catch block

* A class can have more than one exception
class

Copyright © 2012 Pearson Education, Inc.

Contents of Rectangle.h (Version 1)

// Specificaticn file for the Rectangle class

¢ifndef RECTANGLE H
tdefine RECTANGLE H

class Rectangle

1
private:
double width; // The rectangle's width
double length; // The rectangle's length
public:

// Exception class
class NegativeSize
{ F: // Empty class declaration

// Default constructor

Rectangle ()
{ width = 0.0; length = 0.0; }

// Mutator functions, defined in Rectangle.cpp

vold setWidth(double);
vold setLength(double);

Copyright © 2012 Pearson Education, Inc.

Contents of Rectangle.h (Versionl) (Continued)

/f Accessor functions
double getWidth({) const
{ return width: }

double getlLength{) const
{ return length; }

doubrle getArea() const

{ return width * length;

r

tendif

Copyright © 2012 Pearson Education, Inc.

I

Contents of Rectangle.cpp (Version 1)
// Implementation file for the Rectangle class.
tinclude "Rectangle.h"

ff**t*t*t*tt*t*t*t#*t#t*t*ﬁ*#**t***tﬁ*t*t*t**t*t*t*t#*ttt*t*ﬁ

/{ setWidth sets the wvalue of the member wvariable width. *
ff**t***t**

voild Rectangle::setWidth(double w)

{
if (w »= 0)
width = w3
else
throw NegativeSize();
h

fﬁttt*ttt

{/{ setLength sets the walue of the member wvariable length. *
fﬁ*k***k**t***k**t***k**t***k**t***t**t***t**t***t******t****

vold Rectangle::setlLength(double len)

{
if (len >= 0)
length = len;
aelzse
throw NegativeSize();
¥

Copyright © 2012 Pearson Education, Inc.

Program 16-2

// This program demonstrates Rectangle class exceptions.
tinclude <iostream>

tinclude "Rectangle.h"

using namespace std;

int mainf()

{
int width;
int lendath;

// Create a Rectangle object.
REectangle myRectangle;

Copyright © 2012 Pearson Education, Inc.

Program 16-2 {continued)

// Get the width and length.

cout << "Enter the rectangle's width: ";
cin =» width:

cout << "Enter the rectangle's length: ";
cin »> length;

// Btore these values in the Rectangle ocbject.
try
1
myRectangle.setWidth({width);
myRectangle.setLengthilength)
cout << "The area of the rectangle is
<< myRectangle.getArea() << endl;

b

catch (Rectangle::WegativeSize)

{

cout << "Error: A negative value was entered.\n";
t

cout << "End of the program.'n";

return 0O

Copyright © 2012 Pearson Education, Inc.

Program 16-2 (Continued)

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 10 [Enter]

Enter the rectangle's length: 20 [Enter]
The area of the rectangle is 200
End of the program.

Program Output with Example Input Shown in Bold

Enter the rectangle's width: 5 [Enter]
Enter the rectangle's length: -5 [Enter]
Error: A negative value was entered.
End of the program.

Copyright © 2012 Pearson Education, Inc.

What Happens After catch
Block?

* Once an exception iIs thrown, the program

cannot return to throw point. The function
executing throw terminates (does not

return), other calling functions in try block
terminate, resulting in unwinding the stack

* If objects were created In the trvy block and
an exception is thrown, they are destroyed.

Copyright © 2012 Pearson Education, Inc.

Nested try Blocks

« try/catch blocks can occur within an
enclosing try block

« EXceptions caught at an inner level can be
passed up to a catch block at an outer level:

catch ()
{

throw; // pass exception up
} // to next level

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

Function Templates

STARTING OUT WITH ‘ -+

From Control Structures
through Objects

seventh edition

TONY GADDIS

Function Templates

* Function template: a pattern for a function
that can work with many data types

 When written, parameters are left for the
data types

* When called, compiler generates code for
specific data types in function call

Copyright © 2012 Pearson Education, Inc.

Function Template Example

template
template <class T>-« prefix
T timesl1O0 (T num;\\\\\\\\\\\\\\\\\\\ .
generic
{ data type
return 10
} type
parameter

What gets generated when What gets generated when times10 is
times10 is called with an int: | called with a double:

int timeslO (int num) double timeslO (double num)
{

{
return 10 * num; return 10 * num;
} }

Copyright © 2012 Pearson Education, Inc.

Function Template Example

template <class T>

T timeslO (T num)

{

return 10 * num;

}

« Call a template function in the usual manner:
int 1val = 3;
double dval = 2.55;
cout << timeslO0(ival); // displays 30
cout << timesl0 (dval); // displays 25.5

Copyright © 2012 Pearson Education, Inc.

Function Template Notes

« Can define a template to use multiple data types:

template<class T1l, class T2>

« Example:
template<class T1l, class T2> // Tl and T2 will be
double mpg (Tl miles, T2 gallons) // replaced in the

{ // called function
return miles / gallons // with the data
} // types of the

// arguments

Copyright © 2012 Pearson Education, Inc.

Function Template Notes

* Function templates can be overloaded Each
template must have a unigue parameter list

template <class T>
T sumAll (T num)
template <class T1l, class T2>

Tl sumall (Tl numl, T2 num?2)

Copyright © 2012 Pearson Education, Inc.

Function Template Notes

 All data types specified in template prefix
must be used Iin template definition

* Function calls must pass parameters for

all data types specified in the template
prefix

 Like regular functions, function templates
must be defined before being called

Copyright © 2012 Pearson Education, Inc.

Function Template Notes

* A function template is a pattern

* No actual code Is generated until the function
named In the template is called

* A function template uses no memory

* When passing a class object to a function
template, ensure that all operators in the
template are defined or overloaded in the class
definition

Copyright © 2012 Pearson Education, Inc.

C++

From Control Structures

through Objects
.«_;\ |
1 6 3 ==
| TONY GADDIS

Where to Start When Defining
Templates

Copyright © 2012 Pearson Education, Inc.

Where to Start
When Defining Templates

 Templates are often appropriate for
multiple functions that perform the same
task with different parameter data types

* Develop function using usual data types
first, then convert to a template:

— add template prefix

— convert data type names in the function to a
type parameter (i.e., a T type) in the template

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

16.4

Class Templates

STARTING OUT WITH ‘ -+

From Control Structures
through Objects

seventh edition

TONY GADDIS

Class Templates

» Classes can also be represented by
templates. When a class object Is created,
type information is supplied to define the
type of data members of the class.

 Unlike functions, classes are instantiated
by supplying the type name (int, double,
string, etc.) at object definition

Copyright © 2012 Pearson Education, Inc.

Class Template Example

template <class T>
class grade
{
private:
T score;
public:
grade (T) ;
vold setGrade (T);
T getGrade ()

&

Copyright © 2012 Pearson Education, Inc.

Class Template Example

* Pass type information to class template
when defining objects:

grade<int> testList[20];

grade<double> quizList[20];

* Use as ordinary objects once defined

Copyright © 2012 Pearson Education, Inc.

Class Templates and
Inheritance

« Class templates can inherit from other class templates:
template <class T>
class Rectangle
(S
template <class T>
class Square : public Rectangle<T>
(P

« Must use type parameter T everywhere base class
name is used in derived class

Copyright © 2012 Pearson Education, Inc.

Introduction to the Standard
Template Library

Copyright © 2012 Pearson Education, Inc.

Introduction to the
Standard Template Library

« Standard Template Library (STL): a library
containing templates for frequently used
data structures and algorithms

* Not supported by many older compilers

Copyright © 2012 Pearson Education, Inc.

Standard Template Library

* Two important types of data structures in
the STL:

— containers: classes that stores data and
Imposes some organization on it

— iterators: like pointers; mechanisms for
accessing elements in a container

Copyright © 2012 Pearson Education, Inc.

Containers

* Two types of container classes in STL:

— seguence containers: organize and access

data sequentially, as in an array. These
Include vector, dequeue, and 1ist

— associative containers: use keys to allow

data elements to be quickly accessed.
These include set, multiset, map, and
multimap

Copyright © 2012 Pearson Education, Inc.

Iterators

» Generalization of pointers, used to
access Information in containers

* Four types:
— forward (uses ++)
— bidirectional (uses ++ and --)
— random-access

— Input (can be used with cin and istream
objects)

— output (can be used with cout and
ostream objects)

Copyright © 2012 Pearson Education, Inc.

Algorithms

« STL contains algorithms implemented as
function templates to perform operations
on containers.

* Requires algorithm header file
* algorithm includes

binary search count

for each find
find_if max element
min_element random shuffle

sort and others

Copyright © 2012 Pearson Education, Inc.

